Minimal Unsatisfiability and Autarkies

H. K. Büning, O. Kullmann
{"title":"Minimal Unsatisfiability and Autarkies","authors":"H. K. Büning, O. Kullmann","doi":"10.3233/978-1-58603-929-5-339","DOIUrl":null,"url":null,"abstract":"Minimal unsatisfiability describes the reduced kernel of unsatisfiable formulas. The investigation of this property is very helpful in understanding the reasons for unsatisfiability as well as the behaviour of SAT-solvers and proof calculi. Moreover, for propositional formulas and quantified Boolean formulas the computational complexity of various SAT-related problems are strongly related to the complexity of minimal unsatisfiable formulas. While “minimal unsatisfiability” studies the structure of problem instances without redundancies, the study of “autarkies” considers the redundancies themselves, in various guises related to partial assignments which satisfy some part of the problem instance while leaving the rest “untouched”. As it turns out, autarky theory creates many bridges to combinatorics, algebra and logic, and the second part of this chapter provides a solid foundation of the basic ideas and results of autarky theory: the basic algorithmic problems, the algebra involved, and relations to various combinatorial theories (e.g., matching theory, linear programming, graph theory, the theory of permanents). Also the general theory of autarkies as a kind of combinatorial “meta theory” is sketched (regarding its basic notions).","PeriodicalId":250589,"journal":{"name":"Handbook of Satisfiability","volume":"157 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"85","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Handbook of Satisfiability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/978-1-58603-929-5-339","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 85

Abstract

Minimal unsatisfiability describes the reduced kernel of unsatisfiable formulas. The investigation of this property is very helpful in understanding the reasons for unsatisfiability as well as the behaviour of SAT-solvers and proof calculi. Moreover, for propositional formulas and quantified Boolean formulas the computational complexity of various SAT-related problems are strongly related to the complexity of minimal unsatisfiable formulas. While “minimal unsatisfiability” studies the structure of problem instances without redundancies, the study of “autarkies” considers the redundancies themselves, in various guises related to partial assignments which satisfy some part of the problem instance while leaving the rest “untouched”. As it turns out, autarky theory creates many bridges to combinatorics, algebra and logic, and the second part of this chapter provides a solid foundation of the basic ideas and results of autarky theory: the basic algorithmic problems, the algebra involved, and relations to various combinatorial theories (e.g., matching theory, linear programming, graph theory, the theory of permanents). Also the general theory of autarkies as a kind of combinatorial “meta theory” is sketched (regarding its basic notions).
最小限度的不满足和自我封闭
最小不满足性描述了不满足公式的约简核。这一性质的研究对理解不满足性的原因以及sat求解和证明演算的行为有很大的帮助。此外,对于命题公式和量化布尔公式,各种sat相关问题的计算复杂度与最小不满足公式的复杂度密切相关。“最小不满意”研究的是没有冗余的问题实例的结构,而“自给自足”的研究则考虑冗余本身,以各种形式与部分分配相关,这些分配满足了问题实例的某些部分,而其余部分“不受影响”。事实证明,自洽理论为组合学、代数和逻辑建立了许多桥梁,本章的第二部分为自洽理论的基本思想和结果奠定了坚实的基础:基本算法问题、所涉及的代数以及与各种组合理论(例如,匹配理论、线性规划、图论、恒量论)的关系。并概述了作为一种组合的“元理论”的一般理论(关于其基本概念)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信