Multi-level Parallelism for Time- and Cost-Efficient Parallel Discrete Event Simulation on GPUs

G. Kunz, Daniel Schemmel, J. Gross, Klaus Wehrle
{"title":"Multi-level Parallelism for Time- and Cost-Efficient Parallel Discrete Event Simulation on GPUs","authors":"G. Kunz, Daniel Schemmel, J. Gross, Klaus Wehrle","doi":"10.1109/PADS.2012.27","DOIUrl":null,"url":null,"abstract":"Developing complex technical systems requires a systematic exploration of the given design space in order to identify optimal system configurations. However, studying the effects and interactions of even a small number of system parameters often requires an extensive number of simulation runs. This in turn results in excessive runtime demands which severely hamper thorough design space explorations. In this paper, we present a parallel discrete event simulation scheme that enables cost- and time-efficient execution of large scale parameter studies on GPUs. In order to efficiently accommodate the stream-processing paradigm of GPUs, our parallelization scheme exploits two orthogonal levels of parallelism: External parallelism among the inherently independent simulations of a parameter study and internal parallelism among independent events within each individual simulation of a parameter study. Specifically, we design an event aggregation strategy based on external parallelism that generates workloads suitable for GPUs. In addition, we define a pipelined event execution mechanism based on internal parallelism to hide the transfer latencies between host- and GPU-memory. We analyze the performance characteristics of our parallelization scheme by means of a prototype implementation and show a 25-fold performance improvement over purely CPU-based execution.","PeriodicalId":299627,"journal":{"name":"2012 ACM/IEEE/SCS 26th Workshop on Principles of Advanced and Distributed Simulation","volume":"424 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 ACM/IEEE/SCS 26th Workshop on Principles of Advanced and Distributed Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PADS.2012.27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

Developing complex technical systems requires a systematic exploration of the given design space in order to identify optimal system configurations. However, studying the effects and interactions of even a small number of system parameters often requires an extensive number of simulation runs. This in turn results in excessive runtime demands which severely hamper thorough design space explorations. In this paper, we present a parallel discrete event simulation scheme that enables cost- and time-efficient execution of large scale parameter studies on GPUs. In order to efficiently accommodate the stream-processing paradigm of GPUs, our parallelization scheme exploits two orthogonal levels of parallelism: External parallelism among the inherently independent simulations of a parameter study and internal parallelism among independent events within each individual simulation of a parameter study. Specifically, we design an event aggregation strategy based on external parallelism that generates workloads suitable for GPUs. In addition, we define a pipelined event execution mechanism based on internal parallelism to hide the transfer latencies between host- and GPU-memory. We analyze the performance characteristics of our parallelization scheme by means of a prototype implementation and show a 25-fold performance improvement over purely CPU-based execution.
基于gpu的时间和成本效益并行离散事件仿真的多级并行
开发复杂的技术系统需要对给定的设计空间进行系统的探索,以确定最佳的系统配置。然而,研究即使是少量系统参数的影响和相互作用通常也需要大量的模拟运行。这反过来又会导致过多的运行时需求,从而严重阻碍了彻底的设计空间探索。在本文中,我们提出了一种并行离散事件模拟方案,该方案能够在gpu上以成本和时间效率执行大规模参数研究。为了有效地适应gpu的流处理范式,我们的并行化方案利用了两个正交的并行度:参数研究的固有独立模拟之间的外部并行性和参数研究的每个单独模拟中独立事件之间的内部并行性。具体来说,我们设计了一个基于外部并行性的事件聚合策略,该策略生成适合gpu的工作负载。此外,我们定义了一个基于内部并行性的流水线事件执行机制,以隐藏主机和gpu内存之间的传输延迟。我们通过原型实现分析了我们的并行化方案的性能特征,并显示了比纯粹基于cpu的执行提高25倍的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信