Nataliya Sokolovska, N. Hai, K. Clément, Jean-Daniel Zucker
{"title":"Deep Self-Organising Maps for efficient heterogeneous biomedical signatures extraction","authors":"Nataliya Sokolovska, N. Hai, K. Clément, Jean-Daniel Zucker","doi":"10.1109/IJCNN.2016.7727869","DOIUrl":null,"url":null,"abstract":"Feature selection is used to preserve significant properties of data in a compact space. In particular, feature selection is needed in applications, where information comes from multiple heterogeneous high dimensional sources. Data integration, however, is a challenge in itself. In our contribution, we introduce a feature selection framework based on powerful visualisation capabilities of self-organising maps, where the deep structure can be learned in a supervised or unsupervised manner. For a supervised version of the deep SOM, we propose to carry out inference with a linear SVM. A forward-backward procedure helps to converge to an optimal feature set. We show by experiments on real large-scale biomedical data set that the proposed methods embed data in a new compact meaningful representation, allow to visualise biomedical signatures, and also lead to a reasonable classification accuracy compared to the state-of-the-art methods.","PeriodicalId":109405,"journal":{"name":"2016 International Joint Conference on Neural Networks (IJCNN)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2016.7727869","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Feature selection is used to preserve significant properties of data in a compact space. In particular, feature selection is needed in applications, where information comes from multiple heterogeneous high dimensional sources. Data integration, however, is a challenge in itself. In our contribution, we introduce a feature selection framework based on powerful visualisation capabilities of self-organising maps, where the deep structure can be learned in a supervised or unsupervised manner. For a supervised version of the deep SOM, we propose to carry out inference with a linear SVM. A forward-backward procedure helps to converge to an optimal feature set. We show by experiments on real large-scale biomedical data set that the proposed methods embed data in a new compact meaningful representation, allow to visualise biomedical signatures, and also lead to a reasonable classification accuracy compared to the state-of-the-art methods.