Low Latency Geo-distributed Data Analytics

Qifan Pu, G. Ananthanarayanan, P. Bodík, Srikanth Kandula, Aditya Akella, P. Bahl, I. Stoica
{"title":"Low Latency Geo-distributed Data Analytics","authors":"Qifan Pu, G. Ananthanarayanan, P. Bodík, Srikanth Kandula, Aditya Akella, P. Bahl, I. Stoica","doi":"10.1145/2785956.2787505","DOIUrl":null,"url":null,"abstract":"Low latency analytics on geographically distributed datasets (across datacenters, edge clusters) is an upcoming and increasingly important challenge. The dominant approach of aggregating all the data to a single datacenter significantly inflates the timeliness of analytics. At the same time, running queries over geo-distributed inputs using the current intra-DC analytics frameworks also leads to high query response times because these frameworks cannot cope with the relatively low and variable capacity of WAN links. We present Iridium, a system for low latency geo-distributed analytics. Iridium achieves low query response times by optimizing placement of both data and tasks of the queries. The joint data and task placement optimization, however, is intractable. Therefore, Iridium uses an online heuristic to redistribute datasets among the sites prior to queries' arrivals, and places the tasks to reduce network bottlenecks during the query's execution. Finally, it also contains a knob to budget WAN usage. Evaluation across eight worldwide EC2 regions using production queries show that Iridium speeds up queries by 3× -- 19× and lowers WAN usage by 15% -- 64% compared to existing baselines.","PeriodicalId":268472,"journal":{"name":"Proceedings of the 2015 ACM Conference on Special Interest Group on Data Communication","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"328","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 ACM Conference on Special Interest Group on Data Communication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2785956.2787505","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 328

Abstract

Low latency analytics on geographically distributed datasets (across datacenters, edge clusters) is an upcoming and increasingly important challenge. The dominant approach of aggregating all the data to a single datacenter significantly inflates the timeliness of analytics. At the same time, running queries over geo-distributed inputs using the current intra-DC analytics frameworks also leads to high query response times because these frameworks cannot cope with the relatively low and variable capacity of WAN links. We present Iridium, a system for low latency geo-distributed analytics. Iridium achieves low query response times by optimizing placement of both data and tasks of the queries. The joint data and task placement optimization, however, is intractable. Therefore, Iridium uses an online heuristic to redistribute datasets among the sites prior to queries' arrivals, and places the tasks to reduce network bottlenecks during the query's execution. Finally, it also contains a knob to budget WAN usage. Evaluation across eight worldwide EC2 regions using production queries show that Iridium speeds up queries by 3× -- 19× and lowers WAN usage by 15% -- 64% compared to existing baselines.
低延迟地理分布式数据分析
对地理上分布的数据集(跨数据中心、边缘集群)进行低延迟分析是一个即将到来且日益重要的挑战。将所有数据聚合到单个数据中心的主要方法大大提高了分析的及时性。同时,使用当前的dc内分析框架在地理分布输入上运行查询也会导致较高的查询响应时间,因为这些框架无法处理WAN链路相对较低和可变的容量。我们介绍铱,一个低延迟的地理分布式分析系统。Iridium通过优化查询的数据和任务的位置来实现较低的查询响应时间。然而,联合数据和任务布置优化是一个棘手的问题。因此,Iridium在查询到达之前使用在线启发式在站点之间重新分配数据集,并在查询执行期间放置任务以减少网络瓶颈。最后,它还包含一个预算WAN使用的旋钮。对全球8个EC2区域使用生产查询的评估表明,与现有基线相比,Iridium将查询速度提高了3 - 19倍,将WAN使用率降低了15% - 64%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信