Gaetan Lopez Latouche, Laurence Marcotte, Ben Swanson
{"title":"Generating Video Game Scripts with Style","authors":"Gaetan Lopez Latouche, Laurence Marcotte, Ben Swanson","doi":"10.18653/v1/2023.nlp4convai-1.11","DOIUrl":null,"url":null,"abstract":"While modern language models can generate a scripted scene in the format of a play, movie, or video game cutscene the quality of machine generated text remains behind that of human authors. In this work, we focus on one aspect of this quality gap; generating text in the style of an arbitrary and unseen character. We propose the Style Adaptive Semiparametric Scriptwriter (SASS) which leverages an adaptive weighted style memory to generate dialog lines in accordance with a character’s speaking patterns. Using the LIGHT dataset as well as a new corpus of scripts from twenty-three AAA video games, we show that SASS not only outperforms similar models but in some cases can also be used in conjunction with them to yield further improvement.","PeriodicalId":169166,"journal":{"name":"Proceedings of the 5th Workshop on NLP for Conversational AI (NLP4ConvAI 2023)","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th Workshop on NLP for Conversational AI (NLP4ConvAI 2023)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2023.nlp4convai-1.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
While modern language models can generate a scripted scene in the format of a play, movie, or video game cutscene the quality of machine generated text remains behind that of human authors. In this work, we focus on one aspect of this quality gap; generating text in the style of an arbitrary and unseen character. We propose the Style Adaptive Semiparametric Scriptwriter (SASS) which leverages an adaptive weighted style memory to generate dialog lines in accordance with a character’s speaking patterns. Using the LIGHT dataset as well as a new corpus of scripts from twenty-three AAA video games, we show that SASS not only outperforms similar models but in some cases can also be used in conjunction with them to yield further improvement.