Generating Video Game Scripts with Style

Gaetan Lopez Latouche, Laurence Marcotte, Ben Swanson
{"title":"Generating Video Game Scripts with Style","authors":"Gaetan Lopez Latouche, Laurence Marcotte, Ben Swanson","doi":"10.18653/v1/2023.nlp4convai-1.11","DOIUrl":null,"url":null,"abstract":"While modern language models can generate a scripted scene in the format of a play, movie, or video game cutscene the quality of machine generated text remains behind that of human authors. In this work, we focus on one aspect of this quality gap; generating text in the style of an arbitrary and unseen character. We propose the Style Adaptive Semiparametric Scriptwriter (SASS) which leverages an adaptive weighted style memory to generate dialog lines in accordance with a character’s speaking patterns. Using the LIGHT dataset as well as a new corpus of scripts from twenty-three AAA video games, we show that SASS not only outperforms similar models but in some cases can also be used in conjunction with them to yield further improvement.","PeriodicalId":169166,"journal":{"name":"Proceedings of the 5th Workshop on NLP for Conversational AI (NLP4ConvAI 2023)","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th Workshop on NLP for Conversational AI (NLP4ConvAI 2023)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2023.nlp4convai-1.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

While modern language models can generate a scripted scene in the format of a play, movie, or video game cutscene the quality of machine generated text remains behind that of human authors. In this work, we focus on one aspect of this quality gap; generating text in the style of an arbitrary and unseen character. We propose the Style Adaptive Semiparametric Scriptwriter (SASS) which leverages an adaptive weighted style memory to generate dialog lines in accordance with a character’s speaking patterns. Using the LIGHT dataset as well as a new corpus of scripts from twenty-three AAA video games, we show that SASS not only outperforms similar models but in some cases can also be used in conjunction with them to yield further improvement.
生成具有风格的电子游戏脚本
虽然现代语言模型可以生成戏剧、电影或电子游戏过场动画格式的脚本场景,但机器生成文本的质量仍然落后于人类作者。在这项工作中,我们专注于这种质量差距的一个方面;以任意且不可见的字符样式生成文本。我们提出了风格自适应半参数编剧(SASS),它利用自适应加权风格记忆来根据角色的说话模式生成对话线。使用LIGHT数据集以及来自23个AAA视频游戏的新脚本语料库,我们表明SASS不仅优于类似的模型,而且在某些情况下也可以与它们结合使用以产生进一步的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信