Digital implementation for conic section function networks

Hadi Esmaelzadeh, Hamed Farshbaf, Carlos P. Lucas, D. M. Fakhraie
{"title":"Digital implementation for conic section function networks","authors":"Hadi Esmaelzadeh, Hamed Farshbaf, Carlos P. Lucas, D. M. Fakhraie","doi":"10.1109/ICM.2004.1434725","DOIUrl":null,"url":null,"abstract":"A digital implementation is presented for a neural network, which uses conic section function neurons. This network is employed in a digit pattern recognition application. The neural network is trained without any consideration about non-idealities of hardware implementation and then obtained weight parameters are converted to fixed-point bit-string format in order to match hardware implementation. Controlling the number of bits used in this conversion, forces a trade off between accurate operation of the network and size of the hardware. Finding the optimum number of bits, steps are taken for implementation of network. Simulation results in different levels of the prepared design flow are presented.","PeriodicalId":359193,"journal":{"name":"Proceedings. The 16th International Conference on Microelectronics, 2004. ICM 2004.","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. The 16th International Conference on Microelectronics, 2004. ICM 2004.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICM.2004.1434725","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

A digital implementation is presented for a neural network, which uses conic section function neurons. This network is employed in a digit pattern recognition application. The neural network is trained without any consideration about non-idealities of hardware implementation and then obtained weight parameters are converted to fixed-point bit-string format in order to match hardware implementation. Controlling the number of bits used in this conversion, forces a trade off between accurate operation of the network and size of the hardware. Finding the optimum number of bits, steps are taken for implementation of network. Simulation results in different levels of the prepared design flow are presented.
二次曲线函数网络的数字化实现
提出了一种使用圆锥截面函数神经元的神经网络的数字实现方法。该网络应用于数字模式识别。在训练神经网络时不考虑硬件实现的非理想性,然后将得到的权重参数转换为定点位串格式以匹配硬件实现。控制这种转换中使用的比特数,迫使在网络的精确操作和硬件的大小之间进行权衡。找到最优的比特数,采取步骤实现网络。给出了设计流程在不同层次上的仿真结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信