A method for finding zeros of polynomial equations using a contour integral based eigensolver

T. Sakurai, Junko Asakura, Hiroto Tadano, T. Ikegami, Kinji Kimura
{"title":"A method for finding zeros of polynomial equations using a contour integral based eigensolver","authors":"T. Sakurai, Junko Asakura, Hiroto Tadano, T. Ikegami, Kinji Kimura","doi":"10.1145/1577190.1577213","DOIUrl":null,"url":null,"abstract":"In this paper, we present a method for finding zeros of polynomial equations in a given domain. We apply a numerical eigensolver using contour integral for a polynomial eigenvalue problem that is derived from polynomial equations. The Dixon resultant is used to derive the matrix polynomial of which eigenvalues involve roots of the polynomial equations with respect to one variable. The matrix polynomial obtained by the Dixon resultant is sometimes singular. By applying the singular value decomposition for a matrix which appears in the eigensolver, we can obtain the roots of given polynomial systems. Experimental results demonstrate the efficiency of the proposed method.","PeriodicalId":308716,"journal":{"name":"Symbolic-Numeric Computation","volume":"21 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symbolic-Numeric Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1577190.1577213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we present a method for finding zeros of polynomial equations in a given domain. We apply a numerical eigensolver using contour integral for a polynomial eigenvalue problem that is derived from polynomial equations. The Dixon resultant is used to derive the matrix polynomial of which eigenvalues involve roots of the polynomial equations with respect to one variable. The matrix polynomial obtained by the Dixon resultant is sometimes singular. By applying the singular value decomposition for a matrix which appears in the eigensolver, we can obtain the roots of given polynomial systems. Experimental results demonstrate the efficiency of the proposed method.
利用基于轮廓积分的特征解算器求多项式方程零点的方法
本文给出了在给定定义域内求多项式方程零点的一种方法。对于由多项式方程导出的多项式特征值问题,我们应用了一个基于轮廓积分的数值特征求解器。Dixon结式用于推导矩阵多项式,其特征值涉及关于一个变量的多项式方程的根。由狄克逊结式得到的矩阵多项式有时是奇异的。通过对出现在特征解器中的矩阵进行奇异值分解,可以得到给定多项式系统的根。实验结果证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信