Berry-Esseen Bounds for Approximate Maximum Likelihood Estimators in the α-Brownian Bridge

Khalifa Es-Sebaiy, Jabrane Moustaaid, I. Ouassou
{"title":"Berry-Esseen Bounds for Approximate Maximum Likelihood Estimators in the α-Brownian Bridge","authors":"Khalifa Es-Sebaiy, Jabrane Moustaaid, I. Ouassou","doi":"10.31390/josa.2.2.08","DOIUrl":null,"url":null,"abstract":"Let T > 0, α > 1 2 . In this work we consider the problem of estimating the drift parameter of the α-Brownian bridge defined as dXt = −α Xt T−tdt + dWt, 0 ≤ t < T , where W is a standard Brownian motion. Assume that the process X is observed equidistantly in time with the step size ∆n := T n+1 , ti = i∆n, i = 0, ..., n. We will propose two approximate maximum likelihood estimators α̂n and ᾱn for the drift parameter α based on the discrete observations Xti , i = 0, ..., n. The consistency of those estimators is studied. Explicit bounds for the Kolmogorov distance in the central limit theorem for the estimators α̂n and ᾱn are obtained.","PeriodicalId":263604,"journal":{"name":"Journal of Stochastic Analysis","volume":"1998 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Stochastic Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31390/josa.2.2.08","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Let T > 0, α > 1 2 . In this work we consider the problem of estimating the drift parameter of the α-Brownian bridge defined as dXt = −α Xt T−tdt + dWt, 0 ≤ t < T , where W is a standard Brownian motion. Assume that the process X is observed equidistantly in time with the step size ∆n := T n+1 , ti = i∆n, i = 0, ..., n. We will propose two approximate maximum likelihood estimators α̂n and ᾱn for the drift parameter α based on the discrete observations Xti , i = 0, ..., n. The consistency of those estimators is studied. Explicit bounds for the Kolmogorov distance in the central limit theorem for the estimators α̂n and ᾱn are obtained.
α-布朗桥中近似极大似然估计的Berry-Esseen界
设T > 0, α > 1。本文研究了α-布朗桥漂移参数的估计问题,定义为dXt = - α Xt T - tdt + dWt, 0≤T < T,其中W为标准布朗运动。假设在时间上等距离观察过程X,其步长∆n:= T n+1, ti = i∆n, i = 0,…基于离散观测值Xti, i = 0,…,我们将对漂移参数α提出两个近似的极大似然估计量α n和α n。研究了这些估计量的相合性。给出了估计量α n和δ n的中心极限定理中Kolmogorov距离的显式界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信