An Optimized Algorithm For Efficient Problem Solving In K-MEANS Clustering

S. Qureshi, Sunali Y Mehta, Chaahat Gupta
{"title":"An Optimized Algorithm For Efficient Problem Solving In K-MEANS Clustering","authors":"S. Qureshi, Sunali Y Mehta, Chaahat Gupta","doi":"10.1109/ICNGCIS.2017.13","DOIUrl":null,"url":null,"abstract":"K-means clustering is used to cluster numerical data. In K-means we define two measures of distances, between two data points (records) and the distance between two clusters. Distance can be measured (calculated) in a number of ways but four principles tend to hold true. This paper proposes an optimized algorithm for k-means clustering. We introduce genetic algorithm skilfully, on data sets to get an improvised and better results on the data over the existing ones. This algorithm overcomes the disadvantages of the already existing algorithms for obtaining efficient results. We experimentally demonstrate that our algorithm works correctly and can optimize data sets critically for better performance.","PeriodicalId":314733,"journal":{"name":"2017 International Conference on Next Generation Computing and Information Systems (ICNGCIS)","volume":"113 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Next Generation Computing and Information Systems (ICNGCIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNGCIS.2017.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

K-means clustering is used to cluster numerical data. In K-means we define two measures of distances, between two data points (records) and the distance between two clusters. Distance can be measured (calculated) in a number of ways but four principles tend to hold true. This paper proposes an optimized algorithm for k-means clustering. We introduce genetic algorithm skilfully, on data sets to get an improvised and better results on the data over the existing ones. This algorithm overcomes the disadvantages of the already existing algorithms for obtaining efficient results. We experimentally demonstrate that our algorithm works correctly and can optimize data sets critically for better performance.
一种有效求解K-MEANS聚类问题的优化算法
K-means聚类用于数值数据的聚类。在K-means中,我们定义了两个距离度量,两个数据点(记录)之间的距离和两个集群之间的距离。距离的测量(计算)方法有很多种,但有四个原则是正确的。本文提出了一种优化的k-均值聚类算法。我们巧妙地在数据集上引入遗传算法,以获得比现有数据更好的临时数据结果。该算法克服了现有算法在获得高效结果方面的不足。我们通过实验证明了我们的算法是正确的,并且可以优化数据集以获得更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信