Development of a novel large damage site mitigation technique

Laser Damage Pub Date : 2022-12-02 DOI:10.1117/12.2642467
Allison E. M. Browar, E. Feigenbaum, I. Bass, J. Vickers, G. Guss, W. Carr
{"title":"Development of a novel large damage site mitigation technique","authors":"Allison E. M. Browar, E. Feigenbaum, I. Bass, J. Vickers, G. Guss, W. Carr","doi":"10.1117/12.2642467","DOIUrl":null,"url":null,"abstract":"We present the development of carefully tailored shape - increased size (0.9 mm diameter) input surface mitigation sites that shadow and thus supress damage growth on the exit surface of optics. Results from downstream intensification measurements and laser induced damage experiments are presented. The results show a 6X reduction in expanding wave intensification on the exit surface of an optic, being the dominant damage onset mechanism. The tailored rounded cone design can withstand over 30 J/cm2 sub aperture input surface fluence. A significant decrease in laser induced damage initiation and growth was observed compared to shadow cones with linear profiles at input fluences higher than 10 J/cm2.","PeriodicalId":202227,"journal":{"name":"Laser Damage","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser Damage","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2642467","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We present the development of carefully tailored shape - increased size (0.9 mm diameter) input surface mitigation sites that shadow and thus supress damage growth on the exit surface of optics. Results from downstream intensification measurements and laser induced damage experiments are presented. The results show a 6X reduction in expanding wave intensification on the exit surface of an optic, being the dominant damage onset mechanism. The tailored rounded cone design can withstand over 30 J/cm2 sub aperture input surface fluence. A significant decrease in laser induced damage initiation and growth was observed compared to shadow cones with linear profiles at input fluences higher than 10 J/cm2.
一种新型的大损伤部位缓解技术的发展
我们提出了精心定制的形状-增加尺寸(0.9 mm直径)的输入表面缓解点的发展,这些缓解点可以遮蔽并从而抑制光学出口表面的损伤增长。给出了下游强化测量和激光诱导损伤实验的结果。结果表明,光学元件出口表面的膨胀波强度降低了6倍,这是主要的损伤发生机制。量身定制的圆锥形设计可以承受超过30 J/cm2的亚孔径输入表面影响。与线性轮廓的阴影锥相比,在输入影响大于10 J/cm2时,激光诱导损伤的发生和生长显著减少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信