{"title":"Evaluation of Pressure-Strain Correlation As a Basis for Development of a Physics-Based Transition Onset Marker","authors":"S. Muthu, S. Bhushan, D. K. Walters","doi":"10.1115/ajkfluids2019-5418","DOIUrl":null,"url":null,"abstract":"\n Temporally developing direct numerical simulations (T-DNS) are performed for bypass transition of a zero pressure gradient flat plate boundary layer to understand the interplay between pressure-strain terms and flow instability mechanisms, and to propose and validate a phenomenological hypothesis for the identification of a robust transition onset marker for use in transition-sensitive Reynolds-averaged Navier-Stokes (RANS) computational fluid dynamics (CFD) simulations. Results show that transition initiates at a location where the slow pressure-strain term becomes more dominant than the rapid term in the pre-transitional boundary layer region. The slow term is responsible for the transfer of turbulence energy from the streamwise component to other components, most importantly the wall-normal. The relative magnitudes of the slow and rapid terms can potentially provide a basis for the development of physically meaningful large-scale parameters that can be used as transition onset markers for Reynolds averaged Navier-Stokes (RANS) simulations.","PeriodicalId":346736,"journal":{"name":"Volume 2: Computational Fluid Dynamics","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2: Computational Fluid Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/ajkfluids2019-5418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Temporally developing direct numerical simulations (T-DNS) are performed for bypass transition of a zero pressure gradient flat plate boundary layer to understand the interplay between pressure-strain terms and flow instability mechanisms, and to propose and validate a phenomenological hypothesis for the identification of a robust transition onset marker for use in transition-sensitive Reynolds-averaged Navier-Stokes (RANS) computational fluid dynamics (CFD) simulations. Results show that transition initiates at a location where the slow pressure-strain term becomes more dominant than the rapid term in the pre-transitional boundary layer region. The slow term is responsible for the transfer of turbulence energy from the streamwise component to other components, most importantly the wall-normal. The relative magnitudes of the slow and rapid terms can potentially provide a basis for the development of physically meaningful large-scale parameters that can be used as transition onset markers for Reynolds averaged Navier-Stokes (RANS) simulations.