Combining Tensor Decompositions and Graph Analytics to Provide Cyber Situational Awareness at HPC Scale

J. Ezick, Ben Parsons, W. Glodek, Thomas Henretty, M. Baskaran, R. Lethin, J. Feo, Tai-Ching Tuan, Christopher J. Coley, Leslie Leonard, R. Agrawal
{"title":"Combining Tensor Decompositions and Graph Analytics to Provide Cyber Situational Awareness at HPC Scale","authors":"J. Ezick, Ben Parsons, W. Glodek, Thomas Henretty, M. Baskaran, R. Lethin, J. Feo, Tai-Ching Tuan, Christopher J. Coley, Leslie Leonard, R. Agrawal","doi":"10.1109/HPEC.2019.8916559","DOIUrl":null,"url":null,"abstract":"This paper describes MADHAT (Multidimensional Anomaly Detection fusing HPC, Analytics, and Tensors), an integrated workflow that demonstrates the applicability of HPC resources to the problem of maintaining cyber situational awareness. MADHAT combines two high-performance packages: ENSIGN for large-scale sparse tensor decompositions and HAGGLE for graph analytics. Tensor decompositions isolate coherent patterns of network behavior in ways that common clustering methods based on distance metrics cannot. Parallelized graph analysis then uses directed queries on a representation that combines the elements of identified patterns with other available information (such as additional log fields, domain knowledge, network topology, whitelists and blacklists, prior feedback, and published alerts) to confirm or reject a threat hypothesis, collect context, and raise alerts. MADHAT was developed using the collaborative HPC Architecture for Cyber Situational Awareness (HACSAW) research environment and evaluated on structured network sensor logs collected from Defense Research and Engineering Network (DREN) sites using HPC resources at the U.S. Army Engineer Research and Development Center DoD Supercomputing Resource Center (ERDC DSRC). To date, MADHAT has analyzed logs with over 650 million entries.","PeriodicalId":184253,"journal":{"name":"2019 IEEE High Performance Extreme Computing Conference (HPEC)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE High Performance Extreme Computing Conference (HPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPEC.2019.8916559","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

This paper describes MADHAT (Multidimensional Anomaly Detection fusing HPC, Analytics, and Tensors), an integrated workflow that demonstrates the applicability of HPC resources to the problem of maintaining cyber situational awareness. MADHAT combines two high-performance packages: ENSIGN for large-scale sparse tensor decompositions and HAGGLE for graph analytics. Tensor decompositions isolate coherent patterns of network behavior in ways that common clustering methods based on distance metrics cannot. Parallelized graph analysis then uses directed queries on a representation that combines the elements of identified patterns with other available information (such as additional log fields, domain knowledge, network topology, whitelists and blacklists, prior feedback, and published alerts) to confirm or reject a threat hypothesis, collect context, and raise alerts. MADHAT was developed using the collaborative HPC Architecture for Cyber Situational Awareness (HACSAW) research environment and evaluated on structured network sensor logs collected from Defense Research and Engineering Network (DREN) sites using HPC resources at the U.S. Army Engineer Research and Development Center DoD Supercomputing Resource Center (ERDC DSRC). To date, MADHAT has analyzed logs with over 650 million entries.
结合张量分解和图形分析提供高性能计算规模的网络态势感知
本文描述了MADHAT(融合HPC、分析和张量的多维异常检测),这是一个集成的工作流,展示了HPC资源对维护网络态势感知问题的适用性。MADHAT结合了两个高性能软件包:用于大规模稀疏张量分解的ENSIGN和用于图形分析的HAGGLE。张量分解分离出网络行为的相干模式,这是基于距离度量的普通聚类方法无法做到的。然后,并行图分析对一个表示使用定向查询,该表示将已识别模式的元素与其他可用信息(如附加日志字段、领域知识、网络拓扑、白名单和黑名单、先前反馈和发布的警报)结合起来,以确认或拒绝威胁假设、收集上下文并发出警报。MADHAT是使用协作式HPC架构用于网络态势感知(HACSAW)研究环境开发的,并使用美国陆军工程研究与发展中心国防部超级计算资源中心(ERDC DSRC)的HPC资源,对从国防研究与工程网络(DREN)站点收集的结构化网络传感器日志进行了评估。到目前为止,MADHAT已经分析了超过6.5亿个条目的日志。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信