An Enhanced Simulated Kalman Filter Algorithm and its Application in Adaptive Beamforming

K. Lazarus, N. H. Noordin, Z. Ibrahim
{"title":"An Enhanced Simulated Kalman Filter Algorithm and its Application in Adaptive Beamforming","authors":"K. Lazarus, N. H. Noordin, Z. Ibrahim","doi":"10.1109/RFM.2018.8846519","DOIUrl":null,"url":null,"abstract":"The Simulated Kalman Filter (SKF) algorithm is a newly introduced optimization algorithm inspired by the estimation capabilities of Kalman filter. In this paper, a population based metaheuristic algorithm named Simulated Kalman Filter with Modified Measurement (SKFMM) is proposed for adaptive beamforming application. SKFMM is compared with the existing SKF and OBSKF algorithms for adaptive beamforming. The experimental results show that the SKFMM algorithm can produce better mean Signal to Interference Plus Noise Ratio (SINR) values compared to the current SKF and OBSKF algorithms for adaptive beamforming application, producing statistically significant results.","PeriodicalId":111726,"journal":{"name":"2018 IEEE International RF and Microwave Conference (RFM)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International RF and Microwave Conference (RFM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RFM.2018.8846519","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The Simulated Kalman Filter (SKF) algorithm is a newly introduced optimization algorithm inspired by the estimation capabilities of Kalman filter. In this paper, a population based metaheuristic algorithm named Simulated Kalman Filter with Modified Measurement (SKFMM) is proposed for adaptive beamforming application. SKFMM is compared with the existing SKF and OBSKF algorithms for adaptive beamforming. The experimental results show that the SKFMM algorithm can produce better mean Signal to Interference Plus Noise Ratio (SINR) values compared to the current SKF and OBSKF algorithms for adaptive beamforming application, producing statistically significant results.
一种增强的模拟卡尔曼滤波算法及其在自适应波束形成中的应用
模拟卡尔曼滤波器(SKF)算法是受卡尔曼滤波器的估计能力启发而提出的一种新的优化算法。针对自适应波束形成问题,提出了一种基于种群的修正测量模拟卡尔曼滤波(SKFMM)算法。将SKFMM与现有的SKF和OBSKF自适应波束形成算法进行了比较。实验结果表明,在自适应波束形成应用中,与现有的SKF和OBSKF算法相比,SKFMM算法可以产生更好的平均信噪比(SINR)值,结果具有统计学意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信