Bayesian Inference

T. Donovan, R. Mickey
{"title":"Bayesian Inference","authors":"T. Donovan, R. Mickey","doi":"10.1093/oso/9780198841296.003.0004","DOIUrl":null,"url":null,"abstract":"Chapter 4 introduces the concept of Bayesian inference. The chapter discusses the scientific method, and illustrates how Bayes’ Theorem can be used for scientific inference. Bayesian inference is the use of Bayes’ Theorem to draw conclusions about a set of mutually exclusive and exhaustive alternative hypotheses by linking prior knowledge about each hypothesis with new data. The result is updated probabilities for each hypothesis of interest. By the end of this chapter, the reader will understand the concepts of induction and deduction, prior probability of a hypothesis, likelihood of the observed data, and posterior probability of a hypothesis, given the data.","PeriodicalId":285230,"journal":{"name":"Bayesian Statistics for Beginners","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bayesian Statistics for Beginners","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oso/9780198841296.003.0004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Chapter 4 introduces the concept of Bayesian inference. The chapter discusses the scientific method, and illustrates how Bayes’ Theorem can be used for scientific inference. Bayesian inference is the use of Bayes’ Theorem to draw conclusions about a set of mutually exclusive and exhaustive alternative hypotheses by linking prior knowledge about each hypothesis with new data. The result is updated probabilities for each hypothesis of interest. By the end of this chapter, the reader will understand the concepts of induction and deduction, prior probability of a hypothesis, likelihood of the observed data, and posterior probability of a hypothesis, given the data.
贝叶斯推理
第四章介绍了贝叶斯推理的概念。本章讨论了科学方法,并说明了贝叶斯定理如何用于科学推理。贝叶斯推理是利用贝叶斯定理,通过将每个假设的先验知识与新数据联系起来,得出关于一组相互排斥和详尽的可选假设的结论。结果是每个感兴趣的假设的更新概率。在本章结束时,读者将理解归纳和演绎的概念,假设的先验概率,观察数据的可能性,假设的后验概率,给定的数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信