WHERE and WHAT: object perception for autonomous robots

Michael F. Kelly, M. Levine
{"title":"WHERE and WHAT: object perception for autonomous robots","authors":"Michael F. Kelly, M. Levine","doi":"10.1109/ROBOT.1995.525295","DOIUrl":null,"url":null,"abstract":"It is essential that autonomous robots be able to locate and identify objects in their environment. A novel approach for visually extracting such object information from images is presented. Annular operators are used to identify existing symmetric relationships between sets of edge elements. Operators are applied at multiple scales to edge data which have been extracted at multiple scales from a gray-scale image. From the resulting symmetry points, the authors identify a set of object parts in the scene. These are used as the basis for constructing coarse graph-based object descriptors. Preliminary results are presented to illustrate the approach using natural image data.","PeriodicalId":432931,"journal":{"name":"Proceedings of 1995 IEEE International Conference on Robotics and Automation","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1995 IEEE International Conference on Robotics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBOT.1995.525295","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

It is essential that autonomous robots be able to locate and identify objects in their environment. A novel approach for visually extracting such object information from images is presented. Annular operators are used to identify existing symmetric relationships between sets of edge elements. Operators are applied at multiple scales to edge data which have been extracted at multiple scales from a gray-scale image. From the resulting symmetry points, the authors identify a set of object parts in the scene. These are used as the basis for constructing coarse graph-based object descriptors. Preliminary results are presented to illustrate the approach using natural image data.
哪里和什么:自主机器人的物体感知
自主机器人能够定位和识别环境中的物体是至关重要的。提出了一种从图像中视觉提取目标信息的新方法。环形算子用于识别边缘元素集之间存在的对称关系。对从灰度图像中提取的多尺度边缘数据进行多尺度算子处理。从生成的对称点中,作者识别出场景中的一组物体部分。它们被用作构造基于粗图的对象描述符的基础。本文给出了使用自然图像数据来说明该方法的初步结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信