A Teacher-Student Knowledge Distillation Framework for Enhanced Detection of Anomalous User Activity

Chan Hsu, Chan-Tung Ku, Yuwen Wang, Minchen Hsieh, Jun-Ting Wu, Yunhsiang Hsieh, PoFeng Chang, Yimin Lu, Yihuang Kang
{"title":"A Teacher-Student Knowledge Distillation Framework for Enhanced Detection of Anomalous User Activity","authors":"Chan Hsu, Chan-Tung Ku, Yuwen Wang, Minchen Hsieh, Jun-Ting Wu, Yunhsiang Hsieh, PoFeng Chang, Yimin Lu, Yihuang Kang","doi":"10.1109/iri58017.2023.00011","DOIUrl":null,"url":null,"abstract":"As information systems continuously produce high volumes of user event log data, efficient detection of anomalous activities indicative of insider threats becomes crucial. Typical supervised Machine Learning (ML) methods are often labor-intensive and suffer from the constraints of costly labeled data with unknown anomaly dependencies. Here we introduce a knowledge distillation ML framework, using multiple binary classifiers as teacher models and a multi-label model as the student. Leveraging the soft targets of teacher models, we demonstrate that the student model significantly improves performance.","PeriodicalId":290818,"journal":{"name":"2023 IEEE 24th International Conference on Information Reuse and Integration for Data Science (IRI)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 24th International Conference on Information Reuse and Integration for Data Science (IRI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iri58017.2023.00011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As information systems continuously produce high volumes of user event log data, efficient detection of anomalous activities indicative of insider threats becomes crucial. Typical supervised Machine Learning (ML) methods are often labor-intensive and suffer from the constraints of costly labeled data with unknown anomaly dependencies. Here we introduce a knowledge distillation ML framework, using multiple binary classifiers as teacher models and a multi-label model as the student. Leveraging the soft targets of teacher models, we demonstrate that the student model significantly improves performance.
一种用于增强异常用户活动检测的师生知识蒸馏框架
随着信息系统不断产生大量的用户事件日志数据,有效检测指示内部威胁的异常活动变得至关重要。典型的监督机器学习(ML)方法通常是劳动密集型的,并且受到具有未知异常依赖性的昂贵标记数据的约束。在这里,我们引入了一个知识蒸馏ML框架,使用多个二元分类器作为教师模型,使用多标签模型作为学生模型。利用教师模型的软目标,我们证明了学生模型显著提高了绩效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信