Design and Control for ZVS Constant Current and Constant Voltage Wireless Charging Systems

B. Nguyen, Jaspreet Singh, Xinan Zhang, Wen-Zhuang Jiang, L. Koh, Peng Wang
{"title":"Design and Control for ZVS Constant Current and Constant Voltage Wireless Charging Systems","authors":"B. Nguyen, Jaspreet Singh, Xinan Zhang, Wen-Zhuang Jiang, L. Koh, Peng Wang","doi":"10.1109/SPEC.2018.8635891","DOIUrl":null,"url":null,"abstract":"This paper proposes a design and control method for double sided LCC compensation network based wireless charging to obtain both constant voltage (CV) and multiple constant current (CC) characteristics which is suitable for stationary charging system without the need of additional electronic components requirement while maintaining input zero phase angle (ZPA) condition for a wide range of load variations. Proper control strategies are also presented to realize soft switching of power switches. The validity of the proposed concept is demonstrated by both theoretical analysis and computer simulations. Experimental results verify the feasibility of the proposed system.","PeriodicalId":335893,"journal":{"name":"2018 IEEE 4th Southern Power Electronics Conference (SPEC)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 4th Southern Power Electronics Conference (SPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPEC.2018.8635891","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper proposes a design and control method for double sided LCC compensation network based wireless charging to obtain both constant voltage (CV) and multiple constant current (CC) characteristics which is suitable for stationary charging system without the need of additional electronic components requirement while maintaining input zero phase angle (ZPA) condition for a wide range of load variations. Proper control strategies are also presented to realize soft switching of power switches. The validity of the proposed concept is demonstrated by both theoretical analysis and computer simulations. Experimental results verify the feasibility of the proposed system.
ZVS恒流恒压无线充电系统的设计与控制
本文提出了一种基于双面LCC补偿网络的无线充电设计和控制方法,该方法既能获得恒压(CV)特性,又能获得多重恒流(CC)特性,适用于固定充电系统,无需额外的电子元件要求,同时在大范围负载变化下保持输入零相位角(ZPA)状态。提出了实现电源开关软开关的控制策略。理论分析和计算机仿真验证了所提概念的有效性。实验结果验证了该系统的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信