Bidirectional Generation of Object Images and Positions using Deep Generative Models for Service Robotics Applications

Kaede Hayashi, Wenru Zheng, Lotfi El Hafi, Y. Hagiwara, T. Taniguchi
{"title":"Bidirectional Generation of Object Images and Positions using Deep Generative Models for Service Robotics Applications","authors":"Kaede Hayashi, Wenru Zheng, Lotfi El Hafi, Y. Hagiwara, T. Taniguchi","doi":"10.1109/IEEECONF49454.2021.9382768","DOIUrl":null,"url":null,"abstract":"The introduction of systems and robots for automated services is important for reducing running costs and improving operational efficiency in the retail industry. To this aim, we develop a system that enables robot agents to display products in stores. The main problem in automating product display using common supervised methods with robot agents is the huge amount of data required to recognize product categories and arrangements in a variety of different store layouts. To solve this problem, we propose a crossmodal inference system based on joint multimodal variational autoencoder (JMVAE) that learns the relationship between object image information and location information observed on site by robot agents. In our experiments, we created a simulation environment replicating a convenience store that allows a robot agent to observe an object image and its 3D coordinate information, and confirmed whether JMVAE can learn and generate a shared representation of an object image and 3D coordinates in a bidirectional manner.","PeriodicalId":395378,"journal":{"name":"2021 IEEE/SICE International Symposium on System Integration (SII)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/SICE International Symposium on System Integration (SII)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEEECONF49454.2021.9382768","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The introduction of systems and robots for automated services is important for reducing running costs and improving operational efficiency in the retail industry. To this aim, we develop a system that enables robot agents to display products in stores. The main problem in automating product display using common supervised methods with robot agents is the huge amount of data required to recognize product categories and arrangements in a variety of different store layouts. To solve this problem, we propose a crossmodal inference system based on joint multimodal variational autoencoder (JMVAE) that learns the relationship between object image information and location information observed on site by robot agents. In our experiments, we created a simulation environment replicating a convenience store that allows a robot agent to observe an object image and its 3D coordinate information, and confirmed whether JMVAE can learn and generate a shared representation of an object image and 3D coordinates in a bidirectional manner.
服务机器人应用中使用深度生成模型的对象图像和位置的双向生成
引入自动化服务系统和机器人对于降低零售行业的运营成本和提高运营效率非常重要。为此,我们开发了一个系统,使机器人代理能够在商店中展示产品。使用机器人代理的常见监督方法自动化产品展示的主要问题是,在各种不同的商店布局中识别产品类别和安排需要大量的数据。为了解决这一问题,我们提出了一种基于联合多模态变分自编码器(JMVAE)的跨模推理系统,该系统学习机器人代理在现场观察到的目标图像信息与位置信息之间的关系。在我们的实验中,我们创建了一个复制便利店的仿真环境,允许机器人代理观察物体图像及其三维坐标信息,并验证了JMVAE是否能够以双向的方式学习和生成物体图像和三维坐标的共享表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信