Pose-based clustering in action sequences

G. Loy, Josephine Sullivan, S. Carlsson
{"title":"Pose-based clustering in action sequences","authors":"G. Loy, Josephine Sullivan, S. Carlsson","doi":"10.1109/HLK.2003.1240860","DOIUrl":null,"url":null,"abstract":"A method is presented for automatically extracting key frames from an image sequence. The sequence is divided into clusters of frames with similar appearance, and the most central frame in each cluster defines a key frame. Clustering is done using an extension of the normalized cut segmentation technique based on the inter-frame similarities. The similarity between every pair of frames in the sequence is determined from the spatial image characteristics via a shape matching technique. Our algorithm is demonstrated successfully extracting 20 key frames for a tennis player in action over a 30 second (900 frame) video sequence.","PeriodicalId":265600,"journal":{"name":"First IEEE International Workshop on Higher-Level Knowledge in 3D Modeling and Motion Analysis, 2003. HLK 2003.","volume":"347 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"First IEEE International Workshop on Higher-Level Knowledge in 3D Modeling and Motion Analysis, 2003. HLK 2003.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HLK.2003.1240860","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

A method is presented for automatically extracting key frames from an image sequence. The sequence is divided into clusters of frames with similar appearance, and the most central frame in each cluster defines a key frame. Clustering is done using an extension of the normalized cut segmentation technique based on the inter-frame similarities. The similarity between every pair of frames in the sequence is determined from the spatial image characteristics via a shape matching technique. Our algorithm is demonstrated successfully extracting 20 key frames for a tennis player in action over a 30 second (900 frame) video sequence.
动作序列中基于姿态的聚类
提出了一种从图像序列中自动提取关键帧的方法。该序列被分成具有相似外观的帧簇,每簇中最中心的帧定义一个关键帧。聚类是基于帧间相似性的归一化分割技术的扩展。序列中每对帧之间的相似性通过形状匹配技术从空间图像特征中确定。我们的算法成功地从一个30秒(900帧)的视频序列中提取了一个网球运动员的20个关键帧。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信