A Bidirectional LSTM Model for Classifying Chatbot Messages

Nunthawat Lhasiw, Nuttapong Sanglerdsinlapachai, Tanatorn Tanantong
{"title":"A Bidirectional LSTM Model for Classifying Chatbot Messages","authors":"Nunthawat Lhasiw, Nuttapong Sanglerdsinlapachai, Tanatorn Tanantong","doi":"10.1109/iSAI-NLP54397.2021.9678173","DOIUrl":null,"url":null,"abstract":"Online channels, e.g., Facebook Messenger and Line, are widely used especially in COVID-19 pandemic. To quickly respond to their customer, chatbot system are implemented in many companies or organizations, connected to those channels. The Office of Registrar, Thammasat University also implements a chatbot to answer questions from students. An important step in the chatbot system is to know an intention of a question message. A bidirectional LSTM model is employed to classify a question message from the chatbot system into five intention classes. The experimental results shows that the obtained model yields an accuracy of 0.80 on our validation dataset.","PeriodicalId":339826,"journal":{"name":"2021 16th International Joint Symposium on Artificial Intelligence and Natural Language Processing (iSAI-NLP)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 16th International Joint Symposium on Artificial Intelligence and Natural Language Processing (iSAI-NLP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iSAI-NLP54397.2021.9678173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Online channels, e.g., Facebook Messenger and Line, are widely used especially in COVID-19 pandemic. To quickly respond to their customer, chatbot system are implemented in many companies or organizations, connected to those channels. The Office of Registrar, Thammasat University also implements a chatbot to answer questions from students. An important step in the chatbot system is to know an intention of a question message. A bidirectional LSTM model is employed to classify a question message from the chatbot system into five intention classes. The experimental results shows that the obtained model yields an accuracy of 0.80 on our validation dataset.
聊天机器人消息分类的双向LSTM模型
特别是在新冠疫情期间,Facebook Messenger和Line等在线渠道被广泛使用。为了快速响应客户,许多公司或组织都实施了聊天机器人系统,连接到这些渠道。法政大学注册办公室也安装了一个聊天机器人来回答学生的问题。聊天机器人系统的一个重要步骤是了解问题信息的意图。利用双向LSTM模型将聊天机器人系统的问题信息划分为五个意向类。实验结果表明,该模型在验证数据集上的准确率为0.80。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信