Cross-lingual Language Model Pretraining for Retrieval

Puxuan Yu, Hongliang Fei, P. Li
{"title":"Cross-lingual Language Model Pretraining for Retrieval","authors":"Puxuan Yu, Hongliang Fei, P. Li","doi":"10.1145/3442381.3449830","DOIUrl":null,"url":null,"abstract":"Existing research on cross-lingual retrieval cannot take good advantage of large-scale pretrained language models such as multilingual BERT and XLM. We hypothesize that the absence of cross-lingual passage-level relevance data for finetuning and the lack of query-document style pretraining are key factors of this issue. In this paper, we introduce two novel retrieval-oriented pretraining tasks to further pretrain cross-lingual language models for downstream retrieval tasks such as cross-lingual ad-hoc retrieval (CLIR) and cross-lingual question answering (CLQA). We construct distant supervision data from multilingual Wikipedia using section alignment to support retrieval-oriented language model pretraining. We also propose to directly finetune language models on part of the evaluation collection by making Transformers capable of accepting longer sequences. Experiments on multiple benchmark datasets show that our proposed model can significantly improve upon general multilingual language models in both the cross-lingual retrieval setting and the cross-lingual transfer setting.","PeriodicalId":106672,"journal":{"name":"Proceedings of the Web Conference 2021","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Web Conference 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3442381.3449830","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

Existing research on cross-lingual retrieval cannot take good advantage of large-scale pretrained language models such as multilingual BERT and XLM. We hypothesize that the absence of cross-lingual passage-level relevance data for finetuning and the lack of query-document style pretraining are key factors of this issue. In this paper, we introduce two novel retrieval-oriented pretraining tasks to further pretrain cross-lingual language models for downstream retrieval tasks such as cross-lingual ad-hoc retrieval (CLIR) and cross-lingual question answering (CLQA). We construct distant supervision data from multilingual Wikipedia using section alignment to support retrieval-oriented language model pretraining. We also propose to directly finetune language models on part of the evaluation collection by making Transformers capable of accepting longer sequences. Experiments on multiple benchmark datasets show that our proposed model can significantly improve upon general multilingual language models in both the cross-lingual retrieval setting and the cross-lingual transfer setting.
面向检索的跨语言模型预训练
现有的跨语言检索研究不能很好地利用多语言BERT和XLM等大规模预训练语言模型。我们假设缺乏用于调优的跨语言段落级相关数据和缺乏查询文档风格的预训练是这个问题的关键因素。在本文中,我们引入了两个新的面向检索的预训练任务,以进一步对下游检索任务(如跨语言特设检索(CLIR)和跨语言问答(CLQA))的跨语言语言模型进行预训练。我们使用章节对齐从多语言维基百科构建远程监督数据,以支持面向检索的语言模型预训练。我们还建议通过使变形金刚能够接受更长的序列,直接对部分评估集合的语言模型进行微调。在多个基准数据集上的实验表明,该模型在跨语言检索和跨语言迁移两方面都比一般的多语言模型有显著的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信