Robust background subtraction via online robust PCA using image decomposition

S. Javed, S. Oh, JunHyeok Heo, Soon Ki Jung
{"title":"Robust background subtraction via online robust PCA using image decomposition","authors":"S. Javed, S. Oh, JunHyeok Heo, Soon Ki Jung","doi":"10.1145/2663761.2664195","DOIUrl":null,"url":null,"abstract":"Accurate and efficient background subtraction is an important task in video surveillance system. The task becomes more critical when the background scene shows more variations, such as water surface, waving trees and lighting conditions, etc. Recently, Robust Principal Components Analysis (RPCA) shows a nice framework for moving object detection. The background sequence is modeled by a low-dimensional subspace called low-rank matrix and sparse error constitutes the foreground objects. But RPCA presents the limitations of computational complexity and memory storage due to batch optimization methods, as a result it is hard to apply for real-time system. To handle these challenges, this paper presents a robust background subtraction algorithm via Online Robust PCA (OR-PCA) using image decomposition. OR-PCA with image decomposition approach improves the accuracy of foreground detection and the computation time as well. Comprehensive simulations on challenging datasets such as Wallflower, I2R and Change Detection 2014 demonstrate that our proposed scheme significantly outperforms the state-of-the-art approaches and works effectively on a wide range of complex background scenes.","PeriodicalId":120340,"journal":{"name":"Research in Adaptive and Convergent Systems","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in Adaptive and Convergent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2663761.2664195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

Accurate and efficient background subtraction is an important task in video surveillance system. The task becomes more critical when the background scene shows more variations, such as water surface, waving trees and lighting conditions, etc. Recently, Robust Principal Components Analysis (RPCA) shows a nice framework for moving object detection. The background sequence is modeled by a low-dimensional subspace called low-rank matrix and sparse error constitutes the foreground objects. But RPCA presents the limitations of computational complexity and memory storage due to batch optimization methods, as a result it is hard to apply for real-time system. To handle these challenges, this paper presents a robust background subtraction algorithm via Online Robust PCA (OR-PCA) using image decomposition. OR-PCA with image decomposition approach improves the accuracy of foreground detection and the computation time as well. Comprehensive simulations on challenging datasets such as Wallflower, I2R and Change Detection 2014 demonstrate that our proposed scheme significantly outperforms the state-of-the-art approaches and works effectively on a wide range of complex background scenes.
基于图像分解的在线鲁棒PCA鲁棒背景减法
准确、高效的背景减法是视频监控系统中的一项重要任务。当背景场景呈现更多变化时,例如水面、摇曳的树木和光照条件等,任务变得更加关键。近年来,鲁棒主成分分析(RPCA)为运动目标检测提供了一个很好的框架。背景序列由低维子空间低秩矩阵建模,稀疏误差构成前景目标。但由于批量优化方法存在计算复杂度和存储空间的限制,难以应用于实时系统。为了解决这些问题,本文提出了一种基于图像分解的在线鲁棒PCA (OR-PCA)鲁棒背景减除算法。结合图像分解的OR-PCA方法提高了前景检测的精度和计算时间。对具有挑战性的数据集(如Wallflower, I2R和Change Detection 2014)的综合模拟表明,我们提出的方案显着优于最先进的方法,并在广泛的复杂背景场景下有效工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信