Gap-plasmon-resonance enhanced photodetection in NbN superconducting microstrip photodetectors

Jing-wei Yang, Chiao Zong-Yi, Chen Jia-Wern, Lin Chen-Yang, Hao-Chen Yeh, Peng Tzu-Yu, Liang Chi‐Te, Lu Yu-Jung
{"title":"Gap-plasmon-resonance enhanced photodetection in NbN superconducting microstrip photodetectors","authors":"Jing-wei Yang, Chiao Zong-Yi, Chen Jia-Wern, Lin Chen-Yang, Hao-Chen Yeh, Peng Tzu-Yu, Liang Chi‐Te, Lu Yu-Jung","doi":"10.1117/12.2593882","DOIUrl":null,"url":null,"abstract":"We deposited niobium nitride (NbN) thin film by radio-frequency (RF) magnetron sputtering on MgO substrate at 800 oC (with Tc ~15 K). To increase the photodetectivity, we design an Ag nanocube nanoresonator with a strong gap-plasmon resonance in the visible range to further enhance the photoresponsivity by engineering the optical response for the NbN superconducting devices. This is due to the superconducting states are broken down by a localizing strong electromagnetic field. To design the plasmonic nanostructures, we calculated the electromagnetic field distribution of Ag nanocube/Al2O3/NbN structure by finite-difference time-domain (FDTD). We observed a strong plasmonic resonance field which tightly confined in the Al2O3 layer between the Ag nanocube and NbN film at a resonant wavelength of 532 nm. In the end, we will also discuss the detailed working mechanism and the potential application of plasmon-enhanced photodetection in NbN superconducting photodetectors.","PeriodicalId":118068,"journal":{"name":"Plasmonics: Design, Materials, Fabrication, Characterization, and Applications XIX","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasmonics: Design, Materials, Fabrication, Characterization, and Applications XIX","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2593882","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We deposited niobium nitride (NbN) thin film by radio-frequency (RF) magnetron sputtering on MgO substrate at 800 oC (with Tc ~15 K). To increase the photodetectivity, we design an Ag nanocube nanoresonator with a strong gap-plasmon resonance in the visible range to further enhance the photoresponsivity by engineering the optical response for the NbN superconducting devices. This is due to the superconducting states are broken down by a localizing strong electromagnetic field. To design the plasmonic nanostructures, we calculated the electromagnetic field distribution of Ag nanocube/Al2O3/NbN structure by finite-difference time-domain (FDTD). We observed a strong plasmonic resonance field which tightly confined in the Al2O3 layer between the Ag nanocube and NbN film at a resonant wavelength of 532 nm. In the end, we will also discuss the detailed working mechanism and the potential application of plasmon-enhanced photodetection in NbN superconducting photodetectors.
隙等离子体共振增强NbN超导微带光电探测器的光探测
在800℃(Tc ~15 K)温度下,采用射频磁控溅射技术在MgO衬底上沉积了氮化铌(NbN)薄膜。为了提高薄膜的光探测性,我们设计了一种具有强间隙等离子体共振的银纳米立方体纳米谐振器,通过设计NbN超导器件的光响应来进一步提高薄膜的光响应性。这是由于超导态被局域强电磁场击破。为了设计等离子体纳米结构,我们利用时域有限差分(FDTD)计算了Ag纳米立方/Al2O3/NbN结构的电磁场分布。在532 nm的共振波长处,我们观察到一个强等离子体共振场紧密地局限在银纳米立方体和NbN薄膜之间的Al2O3层中。最后,我们还将详细讨论等离子体增强光探测在NbN超导光电探测器中的工作机理和潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信