Handwritten digit recognition using combination of neural network classifiers

A. Khofanzad, C. Chung
{"title":"Handwritten digit recognition using combination of neural network classifiers","authors":"A. Khofanzad, C. Chung","doi":"10.1109/IAI.1998.666880","DOIUrl":null,"url":null,"abstract":"A new classification scheme for handwritten digit recognition is proposed. The method is based on combining the decisions of two multilayer perceptron (MLP) artificial neural network classifiers operating on two different feature types. The first feature set is defined on the pseudo Zernike moments of the image whereas the second feature type is derived from the shadow code of the image using a newly defined projection mask. A MLP network is employed to perform the combination task. The performance is tested on a data base of 15000 samples and the advantage of the combination approach is demonstrated.","PeriodicalId":373701,"journal":{"name":"1998 IEEE Southwest Symposium on Image Analysis and Interpretation (Cat. No.98EX165)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1998 IEEE Southwest Symposium on Image Analysis and Interpretation (Cat. No.98EX165)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAI.1998.666880","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

A new classification scheme for handwritten digit recognition is proposed. The method is based on combining the decisions of two multilayer perceptron (MLP) artificial neural network classifiers operating on two different feature types. The first feature set is defined on the pseudo Zernike moments of the image whereas the second feature type is derived from the shadow code of the image using a newly defined projection mask. A MLP network is employed to perform the combination task. The performance is tested on a data base of 15000 samples and the advantage of the combination approach is demonstrated.
手写体数字识别结合神经网络分类器
提出了一种新的手写体数字识别分类方案。该方法是基于结合两个多层感知器(MLP)人工神经网络分类器对两种不同特征类型的决策。第一特征集是在图像的伪泽尼克矩上定义的,而第二特征类型是使用新定义的投影掩模从图像的阴影代码派生的。采用MLP网络来完成组合任务。在15000个样本的数据库上进行了性能测试,验证了组合方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信