A. Rezazadeh, Sharu Theresa Jose, G. Durisi, O. Simeone
{"title":"Conditional Mutual Information-Based Generalization Bound for Meta Learning","authors":"A. Rezazadeh, Sharu Theresa Jose, G. Durisi, O. Simeone","doi":"10.1109/ISIT45174.2021.9518020","DOIUrl":null,"url":null,"abstract":"Meta-learning optimizes an inductive bias—typically in the form of the hyperparameters of a base-learning algorithm—by observing data from a finite number of related tasks. This paper presents an information-theoretic bound on the generalization performance of any given meta-learner, which builds on the conditional mutual information (CMI) framework of Steinke and Zakynthinou (2020). In the proposed extension to meta-learning, the CMI bound involves a training meta-supersample obtained by first sampling 2N independent tasks from the task environment, and then drawing 2M independent training samples for each sampled task. The meta-training data fed to the meta-learner is modelled as being obtained by randomly selecting N tasks from the available 2N tasks and M training samples per task from the available 2M training samples per task. The resulting bound is explicit in two CMI terms, which measure the information that the meta-learner output and the base-learner output provide about which training data are selected, given the entire meta-supersample. Finally, we present a numerical example that illustrates the merits of the proposed bound in comparison to prior information-theoretic bounds for meta-learning.","PeriodicalId":299118,"journal":{"name":"2021 IEEE International Symposium on Information Theory (ISIT)","volume":"189 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Symposium on Information Theory (ISIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT45174.2021.9518020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
Meta-learning optimizes an inductive bias—typically in the form of the hyperparameters of a base-learning algorithm—by observing data from a finite number of related tasks. This paper presents an information-theoretic bound on the generalization performance of any given meta-learner, which builds on the conditional mutual information (CMI) framework of Steinke and Zakynthinou (2020). In the proposed extension to meta-learning, the CMI bound involves a training meta-supersample obtained by first sampling 2N independent tasks from the task environment, and then drawing 2M independent training samples for each sampled task. The meta-training data fed to the meta-learner is modelled as being obtained by randomly selecting N tasks from the available 2N tasks and M training samples per task from the available 2M training samples per task. The resulting bound is explicit in two CMI terms, which measure the information that the meta-learner output and the base-learner output provide about which training data are selected, given the entire meta-supersample. Finally, we present a numerical example that illustrates the merits of the proposed bound in comparison to prior information-theoretic bounds for meta-learning.