{"title":"Machine conditioning by importance controlled information fusion","authors":"Uwe Mönks, V. Lohweg","doi":"10.1109/ETFA.2013.6647984","DOIUrl":null,"url":null,"abstract":"Sensor and information fusion is recently a major topic which becomes important in machine diagnosis and conditioning for complex production machines and process engineering. It is a known fact that distributed automation systems have a major impact on signal processing and pattern recognition for machine diagnosis. Therefore, it is necessary to research and develop smart diagnosis methods which are applicable for distributed systems like resource-limited cyber-physical systems. In this paper we propose an new approach for sensor and information fusion based on Evidence Theory and socio-psychological decision-making. We show that context based condition monitoring is instantiated even in conflict situations, oc-curing in real life scenarios permanently. A simple but effective importance measure is proposed which controls the significance of conditioning propositions in a system.","PeriodicalId":106678,"journal":{"name":"2013 IEEE 18th Conference on Emerging Technologies & Factory Automation (ETFA)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 18th Conference on Emerging Technologies & Factory Automation (ETFA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETFA.2013.6647984","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16
Abstract
Sensor and information fusion is recently a major topic which becomes important in machine diagnosis and conditioning for complex production machines and process engineering. It is a known fact that distributed automation systems have a major impact on signal processing and pattern recognition for machine diagnosis. Therefore, it is necessary to research and develop smart diagnosis methods which are applicable for distributed systems like resource-limited cyber-physical systems. In this paper we propose an new approach for sensor and information fusion based on Evidence Theory and socio-psychological decision-making. We show that context based condition monitoring is instantiated even in conflict situations, oc-curing in real life scenarios permanently. A simple but effective importance measure is proposed which controls the significance of conditioning propositions in a system.