Application of Magnetic Scalar Potential Volume Integral Method in Nonlinear Magnetostatic Problems

Yongfu Liu, Shiquan He, Juping Li, Lingyu Cao
{"title":"Application of Magnetic Scalar Potential Volume Integral Method in Nonlinear Magnetostatic Problems","authors":"Yongfu Liu, Shiquan He, Juping Li, Lingyu Cao","doi":"10.1109/COMPEM.2018.8496645","DOIUrl":null,"url":null,"abstract":"This paper describes an improved method based on the Magnetic Scalar Potential Volume Integral Method (MSP-VIM) to solve 3-D nonlinear magnetostatic problems. The impedance matrix generated by the Method of Moment (MoM) is separated into constant part and nonlinear part. Moreover, the constant part is further compressed with Multilevel Singular Value Decomposition (MLSVD). Besides, the simplified calculation for symmetrical structure is applied to decrease the unknowns and reduce matrix dimension. Consequently, the iterative solution of nonlinear problems becomes easy and fast. The accuracy and efficiency of the proposed method are demonstrated by numerical examples.","PeriodicalId":221352,"journal":{"name":"2018 IEEE International Conference on Computational Electromagnetics (ICCEM)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Computational Electromagnetics (ICCEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMPEM.2018.8496645","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper describes an improved method based on the Magnetic Scalar Potential Volume Integral Method (MSP-VIM) to solve 3-D nonlinear magnetostatic problems. The impedance matrix generated by the Method of Moment (MoM) is separated into constant part and nonlinear part. Moreover, the constant part is further compressed with Multilevel Singular Value Decomposition (MLSVD). Besides, the simplified calculation for symmetrical structure is applied to decrease the unknowns and reduce matrix dimension. Consequently, the iterative solution of nonlinear problems becomes easy and fast. The accuracy and efficiency of the proposed method are demonstrated by numerical examples.
磁标量势体积积分法在非线性静磁问题中的应用
本文提出了一种基于磁标量势体积积分法(MSP-VIM)的求解三维非线性静磁问题的改进方法。将矩量法生成的阻抗矩阵分为常数部分和非线性部分。在此基础上,利用多阶奇异值分解(MLSVD)对常量部分进行进一步压缩。此外,对对称结构进行简化计算,减少了未知量,降低了矩阵维数。从而使非线性问题的迭代求解变得简单快捷。数值算例验证了该方法的准确性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信