Image statistics and anisotropic diffusion

H. Scharr, Michael J. Black, H. Haussecker
{"title":"Image statistics and anisotropic diffusion","authors":"H. Scharr, Michael J. Black, H. Haussecker","doi":"10.1109/ICCV.2003.1238435","DOIUrl":null,"url":null,"abstract":"Many sensing techniques and image processing applications are characterized by noisy, or corrupted, image data. Anisotropic diffusion is a popular, and theoretically well understood, technique for denoising such images. Diffusion approaches however require the selection of an \"edge stopping\" function, the definition of which is typically ad hoc. We exploit and extend recent work on the statistics of natural images to define principled edge stopping functions for different types of imagery. We consider a variety of anisotropic diffusion schemes and note that they compute spatial derivatives at fixed scales from which we estimate the appropriate algorithm-specific image statistics. Going beyond traditional work on image statistics, we also model the statistics of the eigenvalues of the local structure tensor. Novel edge-stopping functions are derived from these image statistics giving a principled way of formulating anisotropic diffusion problems in which all edge-stopping parameters are learned from training data.","PeriodicalId":131580,"journal":{"name":"Proceedings Ninth IEEE International Conference on Computer Vision","volume":"405 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"71","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Ninth IEEE International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2003.1238435","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 71

Abstract

Many sensing techniques and image processing applications are characterized by noisy, or corrupted, image data. Anisotropic diffusion is a popular, and theoretically well understood, technique for denoising such images. Diffusion approaches however require the selection of an "edge stopping" function, the definition of which is typically ad hoc. We exploit and extend recent work on the statistics of natural images to define principled edge stopping functions for different types of imagery. We consider a variety of anisotropic diffusion schemes and note that they compute spatial derivatives at fixed scales from which we estimate the appropriate algorithm-specific image statistics. Going beyond traditional work on image statistics, we also model the statistics of the eigenvalues of the local structure tensor. Novel edge-stopping functions are derived from these image statistics giving a principled way of formulating anisotropic diffusion problems in which all edge-stopping parameters are learned from training data.
图像统计和各向异性扩散
许多传感技术和图像处理应用的特点是有噪声或损坏的图像数据。各向异性扩散是一种流行的,理论上很好理解的图像去噪技术。然而,扩散方法需要选择一个“边缘停止”函数,其定义通常是特别的。我们利用并扩展了最近在自然图像统计方面的工作,为不同类型的图像定义原则性的边缘停止函数。我们考虑了各种各向异性扩散方案,并注意到它们在固定尺度上计算空间导数,我们从中估计适当的算法特定的图像统计。超越传统的图像统计工作,我们还建立了局部结构张量特征值的统计模型。从这些图像统计中导出了新的止边函数,给出了一种表达各向异性扩散问题的原则方法,其中所有止边参数都是从训练数据中学习的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信