Robust hybrid control for autonomous vehicle motion planning

Emilio Frazzoli, M. Dahleh, E. Feron
{"title":"Robust hybrid control for autonomous vehicle motion planning","authors":"Emilio Frazzoli, M. Dahleh, E. Feron","doi":"10.1109/CDC.2000.912871","DOIUrl":null,"url":null,"abstract":"The operation of an autonomous vehicle in an unknown, dynamic environment is a very complex problem, especially when the vehicle is required to use its full maneuvering capabilities, and to react in real time to changes in the operational environment. A possible approach to reduce the computational complexity of the motion planning problem for a nonlinear, high dimensional system, is based on a quantization of the system dynamics, leading to a control architecture based on a hybrid automaton, the states of which represent feasible trajectory primitives for the vehicle. The paper focuses on the feasibility of this approach, in the presence of disturbances and uncertainties in the plant and/or in the environment: the structure of a robust hybrid automaton is defined and its properties are analyzed. In particular, we address the issues of well-posedness, consistency and reachability. For the case of autonomous vehicles, we provide sufficient conditions to guarantee reachability of the automaton.","PeriodicalId":217237,"journal":{"name":"Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"381","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2000.912871","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 381

Abstract

The operation of an autonomous vehicle in an unknown, dynamic environment is a very complex problem, especially when the vehicle is required to use its full maneuvering capabilities, and to react in real time to changes in the operational environment. A possible approach to reduce the computational complexity of the motion planning problem for a nonlinear, high dimensional system, is based on a quantization of the system dynamics, leading to a control architecture based on a hybrid automaton, the states of which represent feasible trajectory primitives for the vehicle. The paper focuses on the feasibility of this approach, in the presence of disturbances and uncertainties in the plant and/or in the environment: the structure of a robust hybrid automaton is defined and its properties are analyzed. In particular, we address the issues of well-posedness, consistency and reachability. For the case of autonomous vehicles, we provide sufficient conditions to guarantee reachability of the automaton.
自主车辆运动规划的鲁棒混合控制
自动驾驶汽车在未知的动态环境中运行是一个非常复杂的问题,特别是当车辆需要充分利用其机动能力,并对运行环境的变化做出实时反应时。降低非线性高维系统运动规划问题的计算复杂性的一种可能方法是基于系统动力学的量化,从而产生基于混合自动机的控制体系结构,其状态表示车辆的可行轨迹基元。本文重点讨论了这种方法在存在干扰和不确定性的情况下的可行性:定义了鲁棒混合自动机的结构并分析了其性质。特别是,我们解决了适当性、一致性和可达性问题。对于自动驾驶车辆,我们提供了充分的条件来保证自动机的可达性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信