Confidence bounds for threshold similarity graph in random variable network

P. Koldanov, A. Koldanov, D. P. Semenov
{"title":"Confidence bounds for threshold similarity graph in random variable network","authors":"P. Koldanov, A. Koldanov, D. P. Semenov","doi":"10.1002/sam.11642","DOIUrl":null,"url":null,"abstract":"Problem of uncertainty of graph structure identification in random variable network is considered. An approach for the construction of upper and lower confidence bounds for graph structures is developed. This approach is applied for the construction of upper and lower confidence bounds for the threshold similarity graph. The stability of confidence bounds and gaps between upper and lower confidence bounds are investigated. Theoretical results are illustrated by numerical experiments.","PeriodicalId":342679,"journal":{"name":"Statistical Analysis and Data Mining: The ASA Data Science Journal","volume":"50 15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Analysis and Data Mining: The ASA Data Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/sam.11642","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Problem of uncertainty of graph structure identification in random variable network is considered. An approach for the construction of upper and lower confidence bounds for graph structures is developed. This approach is applied for the construction of upper and lower confidence bounds for the threshold similarity graph. The stability of confidence bounds and gaps between upper and lower confidence bounds are investigated. Theoretical results are illustrated by numerical experiments.
随机变量网络中阈值相似图的置信度
研究了随机变量网络中图结构识别的不确定性问题。提出了一种构造图结构上、下置信区间的方法。将该方法应用于阈值相似图的上、下置信区间的构造。研究了置信区间的稳定性和上下置信区间的间隙。数值实验验证了理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信