Sum of roots with positive real parts

H. Anai, S. Hara, K. Yokoyama
{"title":"Sum of roots with positive real parts","authors":"H. Anai, S. Hara, K. Yokoyama","doi":"10.1145/1073884.1073890","DOIUrl":null,"url":null,"abstract":"In this paper we present a method to compute or estimate the sum of roots with positive real parts (SORPRP) of a polynomial, which is related to a certain index of \"average\" stability in optimal control, without computing explicit numerical values of the roots. The method is based on symbolic and algebraic computations and enables us to deal with polynomials with parametric coefficients for their SORPRP. This leads to provide a novel systematic method to achieve optimal regulator design in control by combining the method with quantifier elimination. We also report some experimental result for a typical class of plants and confirm the effectiveness of the proposed method.","PeriodicalId":311546,"journal":{"name":"Proceedings of the 2005 international symposium on Symbolic and algebraic computation","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2005 international symposium on Symbolic and algebraic computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1073884.1073890","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

In this paper we present a method to compute or estimate the sum of roots with positive real parts (SORPRP) of a polynomial, which is related to a certain index of "average" stability in optimal control, without computing explicit numerical values of the roots. The method is based on symbolic and algebraic computations and enables us to deal with polynomials with parametric coefficients for their SORPRP. This leads to provide a novel systematic method to achieve optimal regulator design in control by combining the method with quantifier elimination. We also report some experimental result for a typical class of plants and confirm the effectiveness of the proposed method.
实部为正的根的和
本文给出了一种不需要计算根的显式数值的方法来计算或估计多项式的正实部根和(SORPRP),这与最优控制中的某一“平均”稳定性指标有关。该方法基于符号和代数计算,使我们能够处理具有参数系数的多项式的SORPRP。将该方法与量词消去相结合,为实现控制中的最优调节器设计提供了一种新颖的系统方法。本文还报道了一类典型植物的实验结果,并证实了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信