On the infinitesimal Terracini Lemma

C. Ciliberto
{"title":"On the infinitesimal Terracini Lemma","authors":"C. Ciliberto","doi":"10.4171/rlm/926","DOIUrl":null,"url":null,"abstract":"In this paper we prove an infinitesimal version of the classical Terracini Lemma for 3--secant planes to a variety. Precisely we prove that if $X\\subseteq \\PP^r$ is an irreducible, non--degenerate, projective complex variety of dimension $n$ with $r\\geq 3n+2$, such that the variety of osculating planes to curves in $X$ has the expected dimension $3n$ and for every $0$--dimensional, curvilinear scheme $\\gamma$ of length 3 contained in $X$ the family of hyperplanes sections of $X$ which are singular along $\\gamma$ has dimension larger that $r-3(n+1)$, then $X$ is $2$--secant defective.","PeriodicalId":278201,"journal":{"name":"arXiv: Algebraic Geometry","volume":"131 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/rlm/926","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we prove an infinitesimal version of the classical Terracini Lemma for 3--secant planes to a variety. Precisely we prove that if $X\subseteq \PP^r$ is an irreducible, non--degenerate, projective complex variety of dimension $n$ with $r\geq 3n+2$, such that the variety of osculating planes to curves in $X$ has the expected dimension $3n$ and for every $0$--dimensional, curvilinear scheme $\gamma$ of length 3 contained in $X$ the family of hyperplanes sections of $X$ which are singular along $\gamma$ has dimension larger that $r-3(n+1)$, then $X$ is $2$--secant defective.
关于无穷小的Terracini引理
本文证明了3-割线平面的经典Terracini引理的一个无穷小版本。我们准确地证明了,如果$X\subseteq \PP^r$是一个具有$r\geq 3n+2$的不可约的、非简并的、投影的复维$n$,使得$X$中与曲线相交的平面的变化具有预期的维数$3n$,并且对于每一个$0$维数,在$X$中包含的长度为3的曲线格式$\gamma$, $X$沿$\gamma$的奇异超平面截面族的维数大于$r-3(n+1)$,则$X$为$2$ -割线缺陷。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信