Evaluating the performance of degrees of freedom estimation in asymmetric GARCH models with t-student innovations

T. C. Fonseca, V. S. Cerqueira, H. Migon, Christian A C Torres
{"title":"Evaluating the performance of degrees of freedom estimation in asymmetric GARCH models with t-student innovations","authors":"T. C. Fonseca, V. S. Cerqueira, H. Migon, Christian A C Torres","doi":"10.12660/BRE.V40N22020.80292","DOIUrl":null,"url":null,"abstract":"This work investigates the effects of using the independent Jeffreys prior for the degrees of freedom parameter of a t-student model in the asymmetric generalised autoregressive conditional heteroskedasticity (GARCH) model. To capture asymmetry in the reaction to past shocks, smooth transition models are assumed for the variance. We adopt the fully Bayesian approach for inference, prediction and model selection We discuss problems related to the estimation of degrees of freedom in the Student-t model and propose a solution based on independent Jeffreys priors which correct problems in the likelihood function. A simulated study is presented to investigate how the estimation of model parameters in the t-student GARCH model are affected by small sample sizes, prior distributions and misspecification regarding the sampling distribution. An application to the Dow Jones stock market data illustrates the usefulness of the asymmetric GARCH model with t-student errors.","PeriodicalId":332423,"journal":{"name":"Brazilian Review of Econometrics","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brazilian Review of Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12660/BRE.V40N22020.80292","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This work investigates the effects of using the independent Jeffreys prior for the degrees of freedom parameter of a t-student model in the asymmetric generalised autoregressive conditional heteroskedasticity (GARCH) model. To capture asymmetry in the reaction to past shocks, smooth transition models are assumed for the variance. We adopt the fully Bayesian approach for inference, prediction and model selection We discuss problems related to the estimation of degrees of freedom in the Student-t model and propose a solution based on independent Jeffreys priors which correct problems in the likelihood function. A simulated study is presented to investigate how the estimation of model parameters in the t-student GARCH model are affected by small sample sizes, prior distributions and misspecification regarding the sampling distribution. An application to the Dow Jones stock market data illustrates the usefulness of the asymmetric GARCH model with t-student errors.
具有t-student创新的非对称GARCH模型的自由度估计性能评价
本文研究了在非对称广义自回归条件异方差(GARCH)模型中使用独立Jeffreys先验作为t-student模型的自由度参数的影响。为了捕捉对过去冲击反应的不对称性,假设方差为平滑过渡模型。我们讨论了Student-t模型中自由度估计的相关问题,并提出了一种基于独立杰弗里斯先验的解决方案,修正了似然函数中的问题。本文提出了一项模拟研究,探讨了t-student GARCH模型中模型参数的估计如何受到小样本量、先验分布和抽样分布的错误规范的影响。对道琼斯股票市场数据的应用说明了具有t-student误差的非对称GARCH模型的有用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信