Macroeconomic Forecasting and Structural Analysis Through Regularized Reduced-Rank Regression

E. Bernardini, G. Cubadda
{"title":"Macroeconomic Forecasting and Structural Analysis Through Regularized Reduced-Rank Regression","authors":"E. Bernardini, G. Cubadda","doi":"10.2139/ssrn.2334862","DOIUrl":null,"url":null,"abstract":"This paper proposes a strategy to detect and impose reduced-rank restrictions in medium vector autoregressive models. In this framework, it is known that Canonical Correlation Analysis (CCA) does not perform well because inversions of large covariance matrices are required. We propose a method that combines the richness of reduced-rank regression with the simplicity of naive univariate forecasting methods. In particular, we suggest to use a proper shrinkage estimator of the autocovariance matrices that are involved in the computation of CCA, thus obtaining a method that is asymptotically equivalent to CCA, but it is numerically more stable in finite samples. Simulations and empirical applications document the merits of the proposed approach both in forecasting and in structural analysis.","PeriodicalId":418701,"journal":{"name":"ERN: Time-Series Models (Single) (Topic)","volume":"13 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Time-Series Models (Single) (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2334862","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

This paper proposes a strategy to detect and impose reduced-rank restrictions in medium vector autoregressive models. In this framework, it is known that Canonical Correlation Analysis (CCA) does not perform well because inversions of large covariance matrices are required. We propose a method that combines the richness of reduced-rank regression with the simplicity of naive univariate forecasting methods. In particular, we suggest to use a proper shrinkage estimator of the autocovariance matrices that are involved in the computation of CCA, thus obtaining a method that is asymptotically equivalent to CCA, but it is numerically more stable in finite samples. Simulations and empirical applications document the merits of the proposed approach both in forecasting and in structural analysis.
基于正则化降秩回归的宏观经济预测与结构分析
本文提出了一种在中向量自回归模型中检测和施加降秩约束的策略。在这个框架中,众所周知,典型相关分析(CCA)表现不佳,因为需要对大的协方差矩阵进行反转。我们提出了一种将降秩回归的丰富性与朴素单变量预测方法的简单性相结合的方法。特别是,我们建议使用适当的自协方差矩阵的收缩估计量来计算CCA,从而获得一种与CCA渐近等效的方法,但在有限样本中它在数值上更稳定。模拟和经验应用证明了所提出的方法在预测和结构分析方面的优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信