Predicting Defective Software Components from Code Complexity Measures

Hongyu Zhang, Xiuzhen Zhang, Ming Gu
{"title":"Predicting Defective Software Components from Code Complexity Measures","authors":"Hongyu Zhang, Xiuzhen Zhang, Ming Gu","doi":"10.1109/PRDC.2007.28","DOIUrl":null,"url":null,"abstract":"The ability to predict defective modules can help us allocate limited quality assurance resources effectively and efficiently. In this paper, we propose a complexity- based method for predicting defect-prone components. Our method takes three code-level complexity measures as input, namely Lines of Code, McCabe's Cyclomatic Complexity and Halstead's Volume, and classifies components as either defective or non-defective. We perform an extensive study of twelve classification models using the public NASA datasets. Cross-validation results show that our method can achieve good prediction accuracy. This study confirms that static code complexity measures can be useful indicators of component quality.","PeriodicalId":183540,"journal":{"name":"13th Pacific Rim International Symposium on Dependable Computing (PRDC 2007)","volume":"126 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"13th Pacific Rim International Symposium on Dependable Computing (PRDC 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRDC.2007.28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The ability to predict defective modules can help us allocate limited quality assurance resources effectively and efficiently. In this paper, we propose a complexity- based method for predicting defect-prone components. Our method takes three code-level complexity measures as input, namely Lines of Code, McCabe's Cyclomatic Complexity and Halstead's Volume, and classifies components as either defective or non-defective. We perform an extensive study of twelve classification models using the public NASA datasets. Cross-validation results show that our method can achieve good prediction accuracy. This study confirms that static code complexity measures can be useful indicators of component quality.
从代码复杂度度量预测有缺陷的软件组件
预测缺陷模块的能力可以帮助我们有效地分配有限的质量保证资源。在本文中,我们提出了一种基于复杂性的方法来预测容易出现缺陷的部件。我们的方法以三个代码级复杂性度量作为输入,即代码行数、McCabe的圈复杂度和Halstead的体积,并将组件分为缺陷和非缺陷。我们使用NASA的公共数据集对12个分类模型进行了广泛的研究。交叉验证结果表明,该方法具有较好的预测精度。这项研究证实了静态代码复杂性度量可以作为组件质量的有用指示器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信