{"title":"Predicting Defective Software Components from Code Complexity Measures","authors":"Hongyu Zhang, Xiuzhen Zhang, Ming Gu","doi":"10.1109/PRDC.2007.28","DOIUrl":null,"url":null,"abstract":"The ability to predict defective modules can help us allocate limited quality assurance resources effectively and efficiently. In this paper, we propose a complexity- based method for predicting defect-prone components. Our method takes three code-level complexity measures as input, namely Lines of Code, McCabe's Cyclomatic Complexity and Halstead's Volume, and classifies components as either defective or non-defective. We perform an extensive study of twelve classification models using the public NASA datasets. Cross-validation results show that our method can achieve good prediction accuracy. This study confirms that static code complexity measures can be useful indicators of component quality.","PeriodicalId":183540,"journal":{"name":"13th Pacific Rim International Symposium on Dependable Computing (PRDC 2007)","volume":"126 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"13th Pacific Rim International Symposium on Dependable Computing (PRDC 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRDC.2007.28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
The ability to predict defective modules can help us allocate limited quality assurance resources effectively and efficiently. In this paper, we propose a complexity- based method for predicting defect-prone components. Our method takes three code-level complexity measures as input, namely Lines of Code, McCabe's Cyclomatic Complexity and Halstead's Volume, and classifies components as either defective or non-defective. We perform an extensive study of twelve classification models using the public NASA datasets. Cross-validation results show that our method can achieve good prediction accuracy. This study confirms that static code complexity measures can be useful indicators of component quality.