An accelerated matching algorithm for SIFT-like features

Hongyan Zhang, J. Luo, Zihao Wang, Long Ma, Yi-Fan Niu
{"title":"An accelerated matching algorithm for SIFT-like features","authors":"Hongyan Zhang, J. Luo, Zihao Wang, Long Ma, Yi-Fan Niu","doi":"10.1109/ICIVC.2017.7984527","DOIUrl":null,"url":null,"abstract":"This paper defines the SIFT-like features by analogy and proposes a novel method to accelerate its matching process. The acceleration strategy is to compute a characteristic value for each key point descriptor and divide a key point set into different subsets making use of this value. The approximate nearest neighbor (ANN) search method is applied to improve the efficiency of matching. The performance and accuracy of the proposed algorithm have been tested on various data and compared with the normal ANN search. The experimental results show the new method is, on average, twice faster than ANN search when it is applied to SIFT features' matching.","PeriodicalId":181522,"journal":{"name":"2017 2nd International Conference on Image, Vision and Computing (ICIVC)","volume":"133 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 2nd International Conference on Image, Vision and Computing (ICIVC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIVC.2017.7984527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper defines the SIFT-like features by analogy and proposes a novel method to accelerate its matching process. The acceleration strategy is to compute a characteristic value for each key point descriptor and divide a key point set into different subsets making use of this value. The approximate nearest neighbor (ANN) search method is applied to improve the efficiency of matching. The performance and accuracy of the proposed algorithm have been tested on various data and compared with the normal ANN search. The experimental results show the new method is, on average, twice faster than ANN search when it is applied to SIFT features' matching.
类sift特征的加速匹配算法
本文通过类比的方法定义了类sift特征,提出了一种加快类sift匹配过程的新方法。加速策略是为每个关键点描述符计算一个特征值,并利用该值将关键点集划分为不同的子集。采用近似最近邻(ANN)搜索方法提高匹配效率。在各种数据上测试了该算法的性能和准确性,并与常规的人工神经网络搜索进行了比较。实验结果表明,该方法应用于SIFT特征匹配时,平均速度比人工神经网络搜索快2倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信