{"title":"EvoVGM","authors":"Amine M. Remita, Abdoulaye Baniré Diallo","doi":"10.1145/3535508.3545563","DOIUrl":null,"url":null,"abstract":"Most evolutionary-oriented deep generative models do not explicitly consider the underlying evolutionary dynamics of biological sequences as it is performed within the Bayesian phylogenetic inference framework. In this study, we propose a method for a deep variational Bayesian generative model (EvoVGM) that jointly approximates the true posterior of local evolutionary parameters and generates sequence alignments. Moreover, it is instantiated and tuned for continuous-time Markov chain substitution models such as JC69, K80 and GTR. We train the model via a low-variance stochastic estimator and a gradient ascent algorithm. Here, we analyze the consistency and effectiveness of EvoVGM on synthetic sequence alignments simulated with several evolutionary scenarios and different sizes. Finally, we highlight the robustness of a fine-tuned EvoVGM model using a sequence alignment of gene S of coronaviruses.","PeriodicalId":354504,"journal":{"name":"Proceedings of the 13th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3535508.3545563","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Most evolutionary-oriented deep generative models do not explicitly consider the underlying evolutionary dynamics of biological sequences as it is performed within the Bayesian phylogenetic inference framework. In this study, we propose a method for a deep variational Bayesian generative model (EvoVGM) that jointly approximates the true posterior of local evolutionary parameters and generates sequence alignments. Moreover, it is instantiated and tuned for continuous-time Markov chain substitution models such as JC69, K80 and GTR. We train the model via a low-variance stochastic estimator and a gradient ascent algorithm. Here, we analyze the consistency and effectiveness of EvoVGM on synthetic sequence alignments simulated with several evolutionary scenarios and different sizes. Finally, we highlight the robustness of a fine-tuned EvoVGM model using a sequence alignment of gene S of coronaviruses.