Hybrid Search with Graph Neural Networks for Constraint-Based Navigation Planning [Extended Abstract]

Marc-Emmanuel Coupvent des Graviers, Kevin Osanlou, C. Guettier, T. Cazenave
{"title":"Hybrid Search with Graph Neural Networks for Constraint-Based Navigation Planning [Extended Abstract]","authors":"Marc-Emmanuel Coupvent des Graviers, Kevin Osanlou, C. Guettier, T. Cazenave","doi":"10.1609/socs.v16i1.27299","DOIUrl":null,"url":null,"abstract":"Route planning for autonomous vehicles is a challenging task, especially in dense road networks with multiple delivery points. Additional external constraints can quickly add overhead to this already-difficult problem that often requires prompt, on-the-fly decisions. This work introduces a hybrid method combining machine learning and Constraint Programming (CP) to improve search performance. A new message passing-based graph neural network tailored to constraint solving and global search is defined. Once trained, a single neural network inference is enough to guide CP search while ensuring solution optimality. Large-scale experiments using real road networks from cities worldwide are presented. The hybrid method is effective in solving complex routing problems, addressing larger problems than those used for model training.","PeriodicalId":425645,"journal":{"name":"Symposium on Combinatorial Search","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symposium on Combinatorial Search","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/socs.v16i1.27299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Route planning for autonomous vehicles is a challenging task, especially in dense road networks with multiple delivery points. Additional external constraints can quickly add overhead to this already-difficult problem that often requires prompt, on-the-fly decisions. This work introduces a hybrid method combining machine learning and Constraint Programming (CP) to improve search performance. A new message passing-based graph neural network tailored to constraint solving and global search is defined. Once trained, a single neural network inference is enough to guide CP search while ensuring solution optimality. Large-scale experiments using real road networks from cities worldwide are presented. The hybrid method is effective in solving complex routing problems, addressing larger problems than those used for model training.
基于约束的图神经网络混合搜索导航规划[扩展摘要]
自动驾驶汽车的路线规划是一项具有挑战性的任务,特别是在具有多个交付点的密集道路网络中。额外的外部约束可能会迅速增加这个已经很困难的问题的开销,而这个问题通常需要及时、即时的决策。本文介绍了一种结合机器学习和约束规划(CP)的混合方法来提高搜索性能。定义了一种新的基于消息传递的、适合约束求解和全局搜索的图神经网络。经过训练后,单个神经网络推理就足以指导CP搜索,同时保证解的最优性。采用世界各地城市的真实道路网络进行了大规模实验。这种混合方法在解决复杂的路由问题上是有效的,解决的问题比用于模型训练的问题更大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信