Marc-Emmanuel Coupvent des Graviers, Kevin Osanlou, C. Guettier, T. Cazenave
{"title":"Hybrid Search with Graph Neural Networks for Constraint-Based Navigation Planning [Extended Abstract]","authors":"Marc-Emmanuel Coupvent des Graviers, Kevin Osanlou, C. Guettier, T. Cazenave","doi":"10.1609/socs.v16i1.27299","DOIUrl":null,"url":null,"abstract":"Route planning for autonomous vehicles is a challenging task, especially in dense road networks with multiple delivery points. Additional external constraints can quickly add overhead to this already-difficult problem that often requires prompt, on-the-fly decisions. This work introduces a hybrid method combining machine learning and Constraint Programming (CP) to improve search performance. A new message passing-based graph neural network tailored to constraint solving and global search is defined. Once trained, a single neural network inference is enough to guide CP search while ensuring solution optimality. Large-scale experiments using real road networks from cities worldwide are presented. The hybrid method is effective in solving complex routing problems, addressing larger problems than those used for model training.","PeriodicalId":425645,"journal":{"name":"Symposium on Combinatorial Search","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symposium on Combinatorial Search","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/socs.v16i1.27299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Route planning for autonomous vehicles is a challenging task, especially in dense road networks with multiple delivery points. Additional external constraints can quickly add overhead to this already-difficult problem that often requires prompt, on-the-fly decisions. This work introduces a hybrid method combining machine learning and Constraint Programming (CP) to improve search performance. A new message passing-based graph neural network tailored to constraint solving and global search is defined. Once trained, a single neural network inference is enough to guide CP search while ensuring solution optimality. Large-scale experiments using real road networks from cities worldwide are presented. The hybrid method is effective in solving complex routing problems, addressing larger problems than those used for model training.