ENDOMORPHISMS OF SEMIMODULES OVER SEMIRINGS WITH AN IDEMPOTENT OPERATION

P. Dudnikov, S. Samborskii
{"title":"ENDOMORPHISMS OF SEMIMODULES OVER SEMIRINGS WITH AN IDEMPOTENT OPERATION","authors":"P. Dudnikov, S. Samborskii","doi":"10.1070/IM1992V038N01ABEH002188","DOIUrl":null,"url":null,"abstract":"For an arbitrary endomorphism of the free semimodule over an Abelian semiring with operations and it is shown under the assumption that is idempotent (and under certain other restrictions on ) that there exists a nontrivial \"spectrum\", i.e., there exist a and a nontrivial subsemimodule such that for any . The same result is also obtained for endomorphism analogues of integral operators (in the sense of the theory of idempotent integration). In terms of this spectrum investigations are made of the asymptotic behavior of endomorphisms under iteration and of convergence of the \"Neumann series\" appearing in the solution of the equations . The simplest examples are connected with the semiring and arise, for example, in dynamic programming problems.","PeriodicalId":159459,"journal":{"name":"Mathematics of The Ussr-izvestiya","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of The Ussr-izvestiya","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1070/IM1992V038N01ABEH002188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

Abstract

For an arbitrary endomorphism of the free semimodule over an Abelian semiring with operations and it is shown under the assumption that is idempotent (and under certain other restrictions on ) that there exists a nontrivial "spectrum", i.e., there exist a and a nontrivial subsemimodule such that for any . The same result is also obtained for endomorphism analogues of integral operators (in the sense of the theory of idempotent integration). In terms of this spectrum investigations are made of the asymptotic behavior of endomorphisms under iteration and of convergence of the "Neumann series" appearing in the solution of the equations . The simplest examples are connected with the semiring and arise, for example, in dynamic programming problems.
幂等运算的半模在半环上的自同态
对于具有运算的阿贝尔半环上的自由半模的任意自同态,在幂等的假设下(并在某些其他的限制下)证明了存在一个非平凡的“谱”,即存在一个和一个非平凡的子半模,使得对于任意。对于积分算子的自同态类似物(在幂等积分理论的意义上)也得到了相同的结果。在此谱的基础上,研究了自同态在迭代作用下的渐近性和方程组解中出现的“Neumann级数”的收敛性。最简单的例子与半环有关,并出现在动态规划问题中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信