Multiscale-based image enhancement

T. H. Reeves, M. Jernigan
{"title":"Multiscale-based image enhancement","authors":"T. H. Reeves, M. Jernigan","doi":"10.1109/CCECE.1997.608267","DOIUrl":null,"url":null,"abstract":"Wavelet-based image analysis offers the opportunity to enhance images using features extracted at different scales and subbands. We propose a two-part wavelet domain image enhancement method. First, we apply a locally adaptive filter to the wavelet transform detail coefficients to simultaneously suppress noise and enhance edge contrast. Our estimates of noise variance behaviour across the decomposition scales and subbands are based on simulations. To enhance contrast between large, flat image regions, we apply global histogram equalisation to the wavelet transform approximation coefficients at the coarsest decomposition level.","PeriodicalId":359446,"journal":{"name":"CCECE '97. Canadian Conference on Electrical and Computer Engineering. Engineering Innovation: Voyage of Discovery. Conference Proceedings","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CCECE '97. Canadian Conference on Electrical and Computer Engineering. Engineering Innovation: Voyage of Discovery. Conference Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCECE.1997.608267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Wavelet-based image analysis offers the opportunity to enhance images using features extracted at different scales and subbands. We propose a two-part wavelet domain image enhancement method. First, we apply a locally adaptive filter to the wavelet transform detail coefficients to simultaneously suppress noise and enhance edge contrast. Our estimates of noise variance behaviour across the decomposition scales and subbands are based on simulations. To enhance contrast between large, flat image regions, we apply global histogram equalisation to the wavelet transform approximation coefficients at the coarsest decomposition level.
多尺度图像增强
基于小波的图像分析提供了利用在不同尺度和子带提取的特征来增强图像的机会。提出了一种分两部分的小波域图像增强方法。首先,对小波变换细节系数进行局部自适应滤波,同时抑制噪声和增强边缘对比度。我们在分解尺度和子带上对噪声方差行为的估计是基于模拟的。为了增强大平面图像区域之间的对比度,我们在最粗分解水平上对小波变换近似系数应用全局直方图均衡化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信