Neural networks for multiprocessor real-time scheduling

C. Cardeira, Z. Mammeri
{"title":"Neural networks for multiprocessor real-time scheduling","authors":"C. Cardeira, Z. Mammeri","doi":"10.1109/EMWRTS.1994.336864","DOIUrl":null,"url":null,"abstract":"In recent years, neural networks have become a popular area of research, especially after Hopfield and Tank opened the way for using neural networks for optimization purposes and surprised the scientific community by their paper (Biological Cybernetics, vol. 52, pp. 141-52, 1985) presenting a circuit to give approximate solutions for the classical traveling salesman problem in a few elapsed propagation times of analog amplifiers. In this paper, we analyze Hopfield neural networks from the scheduling viewpoint to see if they can be used to solve real-time scheduling problems. We build a neural network whose topology depends on real-time task constraints, and converges to an approximate solution of the scheduling problem. Finally, we analyze the quality of the result in terms of the convergence rate and the complexity of the algorithm.<<ETX>>","PeriodicalId":322579,"journal":{"name":"Proceedings Sixth Euromicro Workshop on Real-Time Systems","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Sixth Euromicro Workshop on Real-Time Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMWRTS.1994.336864","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

In recent years, neural networks have become a popular area of research, especially after Hopfield and Tank opened the way for using neural networks for optimization purposes and surprised the scientific community by their paper (Biological Cybernetics, vol. 52, pp. 141-52, 1985) presenting a circuit to give approximate solutions for the classical traveling salesman problem in a few elapsed propagation times of analog amplifiers. In this paper, we analyze Hopfield neural networks from the scheduling viewpoint to see if they can be used to solve real-time scheduling problems. We build a neural network whose topology depends on real-time task constraints, and converges to an approximate solution of the scheduling problem. Finally, we analyze the quality of the result in terms of the convergence rate and the complexity of the algorithm.<>
多处理器实时调度的神经网络
近年来,神经网络已经成为一个受欢迎的研究领域,特别是在Hopfield和Tank开辟了将神经网络用于优化目的的道路之后,他们的论文(生物控制论,第52卷,第141-52页,1985年)提出了一个电路,可以在模拟放大器的几个传播时间内给出经典旅行推销员问题的近似解,这让科学界感到惊讶。本文从调度的角度对Hopfield神经网络进行分析,探讨Hopfield神经网络能否用于解决实时调度问题。我们建立了一个神经网络,其拓扑结构依赖于实时任务约束,并收敛到调度问题的近似解。最后,从算法的收敛速度和复杂度两方面对结果的质量进行了分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信