Towards a collection-based results diversification

J. A. Akinyemi, C. Clarke, M. Kolla
{"title":"Towards a collection-based results diversification","authors":"J. A. Akinyemi, C. Clarke, M. Kolla","doi":"10.5555/1937055.1937105","DOIUrl":null,"url":null,"abstract":"We present a method that introduces diversity into document retrieval using clusters of top-m terms obtained from the top-k retrieved documents through pseudo-relevance feedback. Terms from each cluster are used to automatically expand the original query. We evaluate the effectiveness of our method using a non-traditional effectiveness evaluation method, which directly measures the level of diversification by computing the cosine similarity between top-k retrieved documents based on (i) the original query and (ii) the expanded queries. Our results indicate that we can increase diversity without compromising retrieval quality.","PeriodicalId":120472,"journal":{"name":"RIAO Conference","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RIAO Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5555/1937055.1937105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We present a method that introduces diversity into document retrieval using clusters of top-m terms obtained from the top-k retrieved documents through pseudo-relevance feedback. Terms from each cluster are used to automatically expand the original query. We evaluate the effectiveness of our method using a non-traditional effectiveness evaluation method, which directly measures the level of diversification by computing the cosine similarity between top-k retrieved documents based on (i) the original query and (ii) the expanded queries. Our results indicate that we can increase diversity without compromising retrieval quality.
朝着以集合为基础的结果多样化发展
我们提出了一种通过伪相关反馈从top-k检索文档中获得top-m项的聚类,将多样性引入文档检索的方法。来自每个集群的术语用于自动扩展原始查询。我们使用一种非传统的有效性评估方法来评估我们方法的有效性,该方法通过计算基于(i)原始查询和(ii)扩展查询的top-k检索文档之间的余弦相似性来直接测量多样化水平。我们的结果表明,我们可以在不影响检索质量的情况下增加多样性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信