Finding Event-Relevant Content from the Web Using a Near-Duplicate Detection Approach

Hung-Chi Chang, Jenq-Haur Wang, Chih-Yi Chiu
{"title":"Finding Event-Relevant Content from the Web Using a Near-Duplicate Detection Approach","authors":"Hung-Chi Chang, Jenq-Haur Wang, Chih-Yi Chiu","doi":"10.1109/WI.2007.58","DOIUrl":null,"url":null,"abstract":"In online resources, such as news and weblogs, authors often extract articles, embed content, and comment on existing articles related to a popular event. Therefore, it is useful if authors can check whether two or more articles share common parts for further analysis, such as cocitation analysis and search result improvement. If articles do have parts in common, we say the content of such articles is event-relevant. Conventional text classification methods classify a complete document into categories, but they cannot represent the semantics precisely or extract meaningful event-relevant content. To resolve these problems, we propose a near-duplicate detection approach for finding event-relevant content in Web documents. The efficiency of the approach and the proposed duplicate set generation algorithms make it suitable for identifying event-relevant content. The experiment results demonstrate the potential of the proposed approach for use in weblogs.","PeriodicalId":192501,"journal":{"name":"IEEE/WIC/ACM International Conference on Web Intelligence (WI'07)","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/WIC/ACM International Conference on Web Intelligence (WI'07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI.2007.58","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In online resources, such as news and weblogs, authors often extract articles, embed content, and comment on existing articles related to a popular event. Therefore, it is useful if authors can check whether two or more articles share common parts for further analysis, such as cocitation analysis and search result improvement. If articles do have parts in common, we say the content of such articles is event-relevant. Conventional text classification methods classify a complete document into categories, but they cannot represent the semantics precisely or extract meaningful event-relevant content. To resolve these problems, we propose a near-duplicate detection approach for finding event-relevant content in Web documents. The efficiency of the approach and the proposed duplicate set generation algorithms make it suitable for identifying event-relevant content. The experiment results demonstrate the potential of the proposed approach for use in weblogs.
使用近重复检测方法从Web中查找事件相关内容
在诸如新闻和博客之类的在线资源中,作者通常提取文章,嵌入内容,并对与热门事件相关的现有文章进行评论。因此,如果作者可以检查两篇或多篇文章是否有共同的部分,以便进一步分析,如共振分析和搜索结果改进。如果文章确实有共同的部分,我们说这样的文章的内容是事件相关的。传统的文本分类方法将完整的文档分类,但它们不能精确地表示语义或提取有意义的事件相关内容。为了解决这些问题,我们提出了一种近重复检测方法,用于在Web文档中查找与事件相关的内容。该方法的效率和所提出的重复集生成算法使其适合于识别事件相关的内容。实验结果证明了该方法在weblogs中的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信