Meteor: Cryptographically Secure Steganography for Realistic Distributions

Gabriel Kaptchuk, Tushar M. Jois, M. Green, A. Rubin
{"title":"Meteor: Cryptographically Secure Steganography for Realistic Distributions","authors":"Gabriel Kaptchuk, Tushar M. Jois, M. Green, A. Rubin","doi":"10.1145/3460120.3484550","DOIUrl":null,"url":null,"abstract":"Despite a long history of research and wide-spread applications to censorship resistant systems, practical steganographic systems capable of embedding messages into realistic communication distributions, like text, do not exist. We identify two primary impediments to deploying universal steganography: (1) prior work leaves the difficult problem of finding samplers for non-trivial distributions unaddressed, and (2) prior constructions have impractical minimum entropy requirements. We investigate using generative models as steganographic samplers, as they represent the best known technique for approximating human communication. Additionally, we study methods to overcome the entropy requirement, including evaluating existing techniques and designing a new steganographic protocol, called Meteor. The resulting protocols are provably indistinguishable from honest model output and represent an important step towards practical steganographic communication for mundane communication channels. We implement Meteor and evaluate it on multiple computation environments with multiple generative models.","PeriodicalId":135883,"journal":{"name":"Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3460120.3484550","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

Despite a long history of research and wide-spread applications to censorship resistant systems, practical steganographic systems capable of embedding messages into realistic communication distributions, like text, do not exist. We identify two primary impediments to deploying universal steganography: (1) prior work leaves the difficult problem of finding samplers for non-trivial distributions unaddressed, and (2) prior constructions have impractical minimum entropy requirements. We investigate using generative models as steganographic samplers, as they represent the best known technique for approximating human communication. Additionally, we study methods to overcome the entropy requirement, including evaluating existing techniques and designing a new steganographic protocol, called Meteor. The resulting protocols are provably indistinguishable from honest model output and represent an important step towards practical steganographic communication for mundane communication channels. We implement Meteor and evaluate it on multiple computation environments with multiple generative models.
Meteor:用于现实发行版的加密安全隐写术
尽管对抗审查系统进行了长期的研究和广泛的应用,但能够将信息嵌入到现实通信分布(如文本)中的实用隐写系统并不存在。我们确定了部署通用隐写术的两个主要障碍:(1)先前的工作留下了寻找非平凡分布的采样器的难题,并且(2)先前的结构具有不切实际的最小熵要求。我们研究使用生成模型作为隐写采样器,因为它们代表了最著名的近似人类交流的技术。此外,我们研究了克服熵要求的方法,包括评估现有技术和设计一种新的隐写协议,称为Meteor。由此产生的协议可证明与诚实模型输出无法区分,并且代表了在普通通信通道中实现实际隐写通信的重要一步。我们用多个生成模型实现了Meteor,并在多个计算环境下对其进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信