Gabriel Kaptchuk, Tushar M. Jois, M. Green, A. Rubin
{"title":"Meteor: Cryptographically Secure Steganography for Realistic Distributions","authors":"Gabriel Kaptchuk, Tushar M. Jois, M. Green, A. Rubin","doi":"10.1145/3460120.3484550","DOIUrl":null,"url":null,"abstract":"Despite a long history of research and wide-spread applications to censorship resistant systems, practical steganographic systems capable of embedding messages into realistic communication distributions, like text, do not exist. We identify two primary impediments to deploying universal steganography: (1) prior work leaves the difficult problem of finding samplers for non-trivial distributions unaddressed, and (2) prior constructions have impractical minimum entropy requirements. We investigate using generative models as steganographic samplers, as they represent the best known technique for approximating human communication. Additionally, we study methods to overcome the entropy requirement, including evaluating existing techniques and designing a new steganographic protocol, called Meteor. The resulting protocols are provably indistinguishable from honest model output and represent an important step towards practical steganographic communication for mundane communication channels. We implement Meteor and evaluate it on multiple computation environments with multiple generative models.","PeriodicalId":135883,"journal":{"name":"Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3460120.3484550","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18
Abstract
Despite a long history of research and wide-spread applications to censorship resistant systems, practical steganographic systems capable of embedding messages into realistic communication distributions, like text, do not exist. We identify two primary impediments to deploying universal steganography: (1) prior work leaves the difficult problem of finding samplers for non-trivial distributions unaddressed, and (2) prior constructions have impractical minimum entropy requirements. We investigate using generative models as steganographic samplers, as they represent the best known technique for approximating human communication. Additionally, we study methods to overcome the entropy requirement, including evaluating existing techniques and designing a new steganographic protocol, called Meteor. The resulting protocols are provably indistinguishable from honest model output and represent an important step towards practical steganographic communication for mundane communication channels. We implement Meteor and evaluate it on multiple computation environments with multiple generative models.