{"title":"An Evaluation Methodology for Stereo Correspondence Algorithms","authors":"I. Cabezas, M. Trujillo, M. Florian","doi":"10.5220/0003850801540163","DOIUrl":null,"url":null,"abstract":"A comparison of stereo correspondence algorithms can be conducted by a quantitative evaluation of disparity maps. Among the existing evaluation methodologies, the Middlebury’s methodology is commonly used. However, the Middlebury’s methodology has shortcomings in the evaluation model and the error measure. These shortcomings may bias the evaluation results, and make a fair judgment about algorithms accuracy difficult. An alternative, the A∗ methodology is based on a multiobjective optimisation model that only provides a subset of algorithms with comparable accuracy. In this paper, a quantitative evaluation of disparity maps is proposed. It performs an exhaustive assessment of the entire set of algorithms. As innovative aspect, evaluation results are shown and analysed as disjoint groups of stereo correspondence algorithms with comparable accuracy. This innovation is obtained by a partitioning and grouping algorithm. On the other hand, the used error measure offers advantages over the error measure used in the Middlebury’s methodology. The experimental validation is based on the Middlebury’s test-bed and algorithms repository. The obtained results show seven groups with different accuracies. Moreover, the topranked stereo correspondence algorithms by the Middlebury’s methodology are not necessarily the most accurate in the proposed methodology.","PeriodicalId":411140,"journal":{"name":"International Conference on Computer Vision Theory and Applications","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Computer Vision Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0003850801540163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
A comparison of stereo correspondence algorithms can be conducted by a quantitative evaluation of disparity maps. Among the existing evaluation methodologies, the Middlebury’s methodology is commonly used. However, the Middlebury’s methodology has shortcomings in the evaluation model and the error measure. These shortcomings may bias the evaluation results, and make a fair judgment about algorithms accuracy difficult. An alternative, the A∗ methodology is based on a multiobjective optimisation model that only provides a subset of algorithms with comparable accuracy. In this paper, a quantitative evaluation of disparity maps is proposed. It performs an exhaustive assessment of the entire set of algorithms. As innovative aspect, evaluation results are shown and analysed as disjoint groups of stereo correspondence algorithms with comparable accuracy. This innovation is obtained by a partitioning and grouping algorithm. On the other hand, the used error measure offers advantages over the error measure used in the Middlebury’s methodology. The experimental validation is based on the Middlebury’s test-bed and algorithms repository. The obtained results show seven groups with different accuracies. Moreover, the topranked stereo correspondence algorithms by the Middlebury’s methodology are not necessarily the most accurate in the proposed methodology.