A novel genetic cooperative-competitive fuzzy rule based learning method using genetic programming for high dimensional problems

F. Berlanga, M. J. Jesús, F. Herrera
{"title":"A novel genetic cooperative-competitive fuzzy rule based learning method using genetic programming for high dimensional problems","authors":"F. Berlanga, M. J. Jesús, F. Herrera","doi":"10.1109/GEFS.2008.4484575","DOIUrl":null,"url":null,"abstract":"In this contribution, we present GP-COACH, a novel GFS based on the cooperative-competitive learning approach, that uses genetic programming to code fuzzy rules with a different number of variables, for getting compact and accurate rule bases for high dimensional problems. GP-COACH learns disjunctive normal form rules (generated by means of a context-free grammar) and uses a token competition mechanism to maintain the diversity of the population. It makes the rules compete and cooperate among themselves, giving out a compact set of fuzzy rules that presents a good performance. The good results obtained in an experimental study involving several high dimensional classification problems support our proposal.","PeriodicalId":343300,"journal":{"name":"2008 3rd International Workshop on Genetic and Evolving Systems","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 3rd International Workshop on Genetic and Evolving Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GEFS.2008.4484575","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In this contribution, we present GP-COACH, a novel GFS based on the cooperative-competitive learning approach, that uses genetic programming to code fuzzy rules with a different number of variables, for getting compact and accurate rule bases for high dimensional problems. GP-COACH learns disjunctive normal form rules (generated by means of a context-free grammar) and uses a token competition mechanism to maintain the diversity of the population. It makes the rules compete and cooperate among themselves, giving out a compact set of fuzzy rules that presents a good performance. The good results obtained in an experimental study involving several high dimensional classification problems support our proposal.
基于遗传规划的高维问题遗传合作-竞争模糊规则学习方法
在这篇贡献中,我们提出了GP-COACH,一种基于合作-竞争学习方法的新型GFS,它使用遗传规划对具有不同数量变量的模糊规则进行编码,以便为高维问题获得紧凑和准确的规则库。GP-COACH学习析取范式规则(通过上下文无关语法生成),并使用令牌竞争机制来保持种群的多样性。它使规则之间既相互竞争又相互合作,从而得到一组性能良好的紧凑的模糊规则。在涉及几个高维分类问题的实验研究中获得的良好结果支持了我们的建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信