Symbolic-numeric completion of differential systems by homotopy continuation

G. Reid, J. Verschelde, A. Wittkopf, Wenyuan Wu
{"title":"Symbolic-numeric completion of differential systems by homotopy continuation","authors":"G. Reid, J. Verschelde, A. Wittkopf, Wenyuan Wu","doi":"10.1145/1073884.1073922","DOIUrl":null,"url":null,"abstract":"Two ideas are combined to construct a hybrid symbolic-numeric differential-elimination method for identifying and including missing constraints arising in differential systems. First we exploit the fact that a system once differentiated becomes linear in its highest derivatives. Then we apply diagonal homotopies to incrementally process new constraints, one at a time. The method is illustrated on several examples, combining symbolic differential elimination (using rifsimp) with numerical homotopy continuation (using phc).","PeriodicalId":311546,"journal":{"name":"Proceedings of the 2005 international symposium on Symbolic and algebraic computation","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2005 international symposium on Symbolic and algebraic computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1073884.1073922","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Two ideas are combined to construct a hybrid symbolic-numeric differential-elimination method for identifying and including missing constraints arising in differential systems. First we exploit the fact that a system once differentiated becomes linear in its highest derivatives. Then we apply diagonal homotopies to incrementally process new constraints, one at a time. The method is illustrated on several examples, combining symbolic differential elimination (using rifsimp) with numerical homotopy continuation (using phc).
微分系统的同伦延拓符号-数值补全
将这两种思想结合起来,构造了一种用于识别和包括微分系统中产生的缺失约束的符号-数值微分消除混合方法。首先,我们利用这样一个事实,即一个系统一旦被微分,其最高导数就会变成线性。然后我们应用对角同伦增量处理新的约束,一次一个。结合符号微分消去法(使用rifsimp)和数值同伦延拓法(使用phc),给出了若干实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信