Study on Optical Fiber Communication in Vehicle

Toshihito Tatsuoka, Zhenni Pan, S. Shimamoto
{"title":"Study on Optical Fiber Communication in Vehicle","authors":"Toshihito Tatsuoka, Zhenni Pan, S. Shimamoto","doi":"10.1109/VTC2022-Fall57202.2022.10013017","DOIUrl":null,"url":null,"abstract":"We designed an in-vehicle communication system using wavelength division multiplexing and investigated its characteristics under various environments. Since a single optical fiber can communicate multiple wavelengths of light, it is assumed that this will lead to a reduction in the number and weight of cables required for communication compared to conventional coaxial cables. As a result, vehicle maintenance and fuel efficiency were improved. Using data from coaxial cables as a reference, the transmission characteristics of single-mode fiber (SMF), the wavelength division multiplexing (WDM) systems, and the transmission characteristics of optical fibers were measured and compared in an in-vehicle environment.","PeriodicalId":326047,"journal":{"name":"2022 IEEE 96th Vehicular Technology Conference (VTC2022-Fall)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 96th Vehicular Technology Conference (VTC2022-Fall)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VTC2022-Fall57202.2022.10013017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We designed an in-vehicle communication system using wavelength division multiplexing and investigated its characteristics under various environments. Since a single optical fiber can communicate multiple wavelengths of light, it is assumed that this will lead to a reduction in the number and weight of cables required for communication compared to conventional coaxial cables. As a result, vehicle maintenance and fuel efficiency were improved. Using data from coaxial cables as a reference, the transmission characteristics of single-mode fiber (SMF), the wavelength division multiplexing (WDM) systems, and the transmission characteristics of optical fibers were measured and compared in an in-vehicle environment.
车载光纤通信技术研究
设计了一种基于波分复用的车载通信系统,并对其在不同环境下的性能进行了研究。由于一根光纤可以传输多个波长的光,因此假定与传统同轴电缆相比,这将导致通信所需电缆的数量和重量的减少。因此,车辆维修和燃油效率得到了改善。以同轴电缆数据为参考,测量并比较了车载环境下单模光纤(SMF)、波分复用(WDM)系统和光纤的传输特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信