TwMiner: Mining Relevant Tweets of News Articles

Roshni Chakraborty, Nilotpal Chakraborty
{"title":"TwMiner: Mining Relevant Tweets of News Articles","authors":"Roshni Chakraborty, Nilotpal Chakraborty","doi":"10.1109/CCGridW59191.2023.00052","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a pseudo-relevance feedback-based automated approach that utilizes both the content and context attributes of a news article to determine the tweets relevant to that news article. Extensive empirical validation on a set of 1000 news articles highlights that the proposed approach can ensure high precision (0.942) in comparison to the current research works and can successfully extract relevant tweets for a majority of the news articles, around 95% of the total news articles.","PeriodicalId":341115,"journal":{"name":"2023 IEEE/ACM 23rd International Symposium on Cluster, Cloud and Internet Computing Workshops (CCGridW)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/ACM 23rd International Symposium on Cluster, Cloud and Internet Computing Workshops (CCGridW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGridW59191.2023.00052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose a pseudo-relevance feedback-based automated approach that utilizes both the content and context attributes of a news article to determine the tweets relevant to that news article. Extensive empirical validation on a set of 1000 news articles highlights that the proposed approach can ensure high precision (0.942) in comparison to the current research works and can successfully extract relevant tweets for a majority of the news articles, around 95% of the total news articles.
TwMiner:挖掘新闻文章的相关推文
在本文中,我们提出了一种基于伪相关反馈的自动化方法,该方法利用新闻文章的内容和上下文属性来确定与该新闻文章相关的推文。在一组1000篇新闻文章上进行的大量实证验证表明,与目前的研究工作相比,所提出的方法可以确保较高的精度(0.942),并且可以成功地提取大多数新闻文章的相关推文,约占新闻文章总数的95%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信