Automatic answer ranking based on sememe vector in KBQA

Yadi Li, Lingling Mu, Hao Li, Hongying Zan
{"title":"Automatic answer ranking based on sememe vector in KBQA","authors":"Yadi Li, Lingling Mu, Hao Li, Hongying Zan","doi":"10.1109/IALP48816.2019.9037712","DOIUrl":null,"url":null,"abstract":"This paper proposes an answer ranking method used in Knowledge Base Question Answering (KBQA) system. This method first extracts the features of predicate sequence similarity based on sememe vector, predicates’ edit distances, predicates’ word co-occurrences and classification. Then the above features are used as inputs of the ranking learning algorithm Ranking SVM to rank the candidate answers. In this paper, the experimental results on the data set of KBQA system evaluation task in the 2016 Natural Language Processing & Chinese Computing (NLPCC 2016) show that, the method of word similarity calculation based on sememe vector has better results than the method based on word2vec. Its accuracy, recall rate and average F1 value respectively are 73.88%, 82.29% and 75.88%. The above results show that the word representation with knowledge has import effect on natural language processing.","PeriodicalId":208066,"journal":{"name":"2019 International Conference on Asian Language Processing (IALP)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Asian Language Processing (IALP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IALP48816.2019.9037712","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes an answer ranking method used in Knowledge Base Question Answering (KBQA) system. This method first extracts the features of predicate sequence similarity based on sememe vector, predicates’ edit distances, predicates’ word co-occurrences and classification. Then the above features are used as inputs of the ranking learning algorithm Ranking SVM to rank the candidate answers. In this paper, the experimental results on the data set of KBQA system evaluation task in the 2016 Natural Language Processing & Chinese Computing (NLPCC 2016) show that, the method of word similarity calculation based on sememe vector has better results than the method based on word2vec. Its accuracy, recall rate and average F1 value respectively are 73.88%, 82.29% and 75.88%. The above results show that the word representation with knowledge has import effect on natural language processing.
基于语义向量的KBQA自动答案排序
提出了一种应用于知识库问答(KBQA)系统的答案排序方法。该方法首先从语义向量、谓词编辑距离、谓词词共现和分类等方面提取谓词序列相似度特征;然后将上述特征作为排序学习算法ranking SVM的输入,对候选答案进行排序。本文在2016年自然语言处理与中文计算(NLPCC 2016)中KBQA系统评价任务数据集上的实验结果表明,基于语义向量的词相似度计算方法比基于word2vec的方法效果更好。其准确率、召回率和平均F1值分别为73.88%、82.29%和75.88%。上述结果表明,带知识的词表示在自然语言处理中具有重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信